3D Printing
News Videos Newsletter Contact us
Home / Use Cases / Intro to Continuous Fiber 3D Printing
revopoint

Intro to Continuous Fiber 3D Printing

January 21, 2020

The range of materials available in 3D printing, even just within Fused Deposition Modeling, has grown considerably in the last few years. Not only are there multiple reputable brands that carry all types of thermoplastics such as ABS, PLA, nylon, and PETG but there are also composites of all those materials that are embedded with various particles/strands like carbon fiber and fiberglass. There’s yet another variety of composite 3D printing that’s becoming increasingly popular: continuous fiber.

Chopped vs Continuous

With standard fiber-filled filament, the fiber strands are chopped very short to make the material printable. The most obvious drawback is that there’s little overlap between the fibers and practicality no fibers that cross adjoining layers. As such, parts printed with fiber-filled materials are often only marginally stronger or stiffer than standard 3D printed parts.

Continuous fiber 3D printing is exactly as it sounds. Rather than embedding millions of half-a-millimeter-long strands of fiber into the filament when it’s manufactured, a spool of fiber is used to embed very long strands of fiber into parts as they are printed. Continuous fiber 3D printing provides substantially more strength and stiffness because it better mimics the manufacturing process of traditional carbon fiber parts where long strands of fiber are layered on top of another in a resin.

continuous-composites

The Costs of Conventional Carbon Fiber

Conventional carbon fiber parts are very expensive not because of the cost of the raw materials but because of the costs of the equipment needed to ship and process those materials. Pre-preg is a term that applies to a composite of carbon fiber and resin that’s still wet and ready for shaping; it has to be refrigerated from the moment it’s manufactured up until the point it’s used, meaning there are lots of extra logistical costs. To make carbon fiber parts, molds first have to be made, which of course aren’t free. And curing the final parts requires autoclaves that are as large as the parts themselves, and considering that carbon fiber is a popular choice for building airplanes, the autoclaves are understandably expensive to build and operate.

With continuous fiber 3D printing, nearly all of those costs go away without sacrificing strength. There are several companies that offer continuous fiber 3D printing but we’re going to look at three of the best-known brands.

Markforged has several machines that can lay continuous fibers. Their systems rely on separate toolheads to deposit the different materials: one extrudes a thermoplastic matrix just like a normal 3D printer and the other lays down strands of fiber in select areas to increase tensile strength. They can work with carbon fiber, fiberglass, and kevlar.

Desktop Metal’s Fiber system works much in the same way as the Markforged solution except that its Micro Automated Fiber Placement (µAFP) technology uses rolls of fiber tape rather than spools of fiber. It can embed carbon fiber into nylon, PEEK, and PEKK, and nylon can also be embedded with fiberglass. They claim their parts can be stronger than steel and lighter than aluminum.

https://www.youtube.com/watch?v=n4jSYMIqxHk

Continuous Composites takes a different approach with their CF3D solution. Instead of using a thermoplastic for its rigid material, it employs a photopolymer. The toolhead coats the strand of fiber with a photopolymer as it’s deposited and then immediately cures it with a powerful UV light. This allows it to embed every single line with fiber, not just select areas. It also means it can bridge long gaps without the need of supports. The CF3D system is compatible with structural fibers like carbon, glass, and aramid as well as functional fibers such as optical and metal, which enables all kinds of nifty tricks like embedded sensors and circuits.

https://www.youtube.com/watch?v=QsiOOYK7J6k

While these systems are not as affordable as most desktop 3D printers, they’re significantly more accessible than most metal 3D printers and conventional carbon fiber manufacturing equipment, and they’re way easier to use. The material selection for this segment will continue to grow with the 3D printing materials sector as a whole; more polymers will be developed for the matrix and more fibers will be released to match. I wouldn’t be surprised if there are already material scientists developing fibers that expand and contract when heated or exposed to an electrical current, which would delight those who are working on soft robotics and embedded electronics.

Featured image courtesy of Continuous Composites.

Related Story
3D Printing & Embedded Electronics – How AM Enables Smarter Objects
3d-printed-silicone-hd-featured-600
Related Story
An Overview Of Silicone 3D Printing
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Cameron Naramore
Cameron is a 3D printer and CNC operator. He's fond of cooking, traveling, and science fiction.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Mandrill’s Custom Bonneville T120 Street Tracker Reimagines Classic Design

Chinese custom shop Mandrill Garage has transformed a Triumph Bonneville T120 into a street tracker that blends racing aesthetics with practical functionality. The... read more »

Automotive
Mandrill's Custom Bonneville T120 Street Tracker Reimagines Classic Design

Design Lab Invents Modular, Fully 3D Printed Wheelchair for Kids

MakeGood NOLA has developed a modular, fully 3D-printed wheelchair for children ages 2 to 8. The New Orleans-based adaptive design lab created the... read more »

News

Donkervoort’s New P24 RS Supercar Uses 3D-Printed Intercoolers

Conflux Technology, an Australian company specializing in heat exchangers, has created a 3D-printed intercooler for Donkervoort's upcoming P24 RS supercar. The metal 3D-printed... read more »

Automotive
Donkervoort's New P24 RS Supercar Uses 3D-Printed Intercoolers

3D Printed Concrete Bus Stop Creates Sculptural Shelter in Slovakia

A new 3D-printed concrete bus stop has been installed in Bratislava, Slovakia, as part of urban development in the growing Čerešne district. The... read more »

Construction
3D Printed Concrete Bus Stop Creates Sculptural Shelter in Slovakia

Reducing Porosity Key to Stronger Large-Scale 3D Prints

Oak Ridge National Laboratory (ORNL) researchers have created a vacuum-assisted extrusion technique that reduces internal porosity in large-scale 3D-printed polymer parts by up... read more »

News

Engineer Creates 3D Printed Trekking Pole Attachment to Combat Trail Litter

Aerospace engineer John McShane has developed "CleanTrek," a 3D-printed attachment for hiking poles designed to collect litter on trails. Inspired by a trash-strewn... read more »

Environmental
Engineer Creates 3D Printed Trekking Pole Attachment to Combat Trail Litter

New $9M Illinois Lab to 3D Print Large Vehicle Parts for US Military

The University of Illinois Urbana-Champaign is establishing a new research center focused on developing additive manufacturing methods for large metal parts. The center... read more »

Military
New $9M Illinois Lab to 3D Print Large Vehicle Parts for US Military

University of Florida Students Develop Simple Spool to Address 3D Printing Waste

A team of University of Florida mechanical engineering students has created a device aimed at reducing plastic waste in 3D printing. The device,... read more »

Environmental
University of Florida Students Develop Simple Spool to Address 3D Printing Waste

Cadillac CELESTIQ Features Over 100 3D Printed Parts in Luxury Hand-Built Design

General Motors has expanded its use of additive manufacturing beyond prototyping to include functional parts in production vehicles. The Cadillac CELESTIQ, a hand-built... read more »

Automotive

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing