3D Printing
News Videos Newsletter Contact us
Home / Automotive / Polish Race Team Gets Lightweight AM Upgrades
qidi

Polish Race Team Gets Lightweight AM Upgrades

July 19, 2021

A kart racing team in Poland has made use of additive manufacturing to further reduce the weight of their already lean PMT-03 racing machine.

The PRz Racing Team, based in Rzeszów, Poland, have been building their small but rapid race cars and entering them into the Formula Student university racing competitions since 2015.

There have been three variants to date, with the PMT-03 being the latest incarnation.

The PMT-03 is basically a Triumph motorcycle engine powered race car, and has a kickass power to weight ratio as a result. This all the power of a racing bike but the stability and handling of a car. A super racing kart!

But in a world where victories depend on shedding grams and gaining horses, engineers must think outside of the box where it comes to making weight or power based performance gains.

PRz Racing Team has teamed up with Polish 3D printer manufacturer Omni3D to see how they can shed some weight from their car.

Let’s have a look at how the partnership has resulted in reduced weight, cost, and lead time for not just one, but three components on the car.

PMT-03 race car
PMT-03 race car (Image credit: Omni3D)

Intake Manifold

A car (or motorbike) intake manifold typically bolts onto the engine block and is a bunch of pipes that guide the fuel/air mix into the cylinders. As they are connected to the hot engine block and are exposed to chemicals all the time, temperature and chemical resistance are big design drivers for this component. Traditionally, intake manifolds have been cast in metal, usually in steel or aluminium, and machined to tolerance, but use of high temperature plastics is becoming more widespread.

Manifold in plastic
Manifold in plastic (Image credit: Omni3D)

Thanks to AM, the team has had access to a wide palette of materials that exceed the performance of industrial ABS typically used for these kinds of applications, and satisfy the requirements of the design.

Using the Factory 2.0 NET printer by Omni3D, the team printed an intake manifold in CF PA-12 material, which is 2.5 times as strong as ABS-42.

Factory 2.0 Net printer
Factory 2.0 NET printer (Image credit: Omni3D)

The end result was a temperature resistant part that weighed just 570 grams and took a mere 65 hours to manufacture. That is compared to traditional manufacturing which would have taken more than twice as long.

In terms of cost reduction, this part cost just 450 PLN (100 Euro) to print compared to the price of 1400 PLN (310 Euro) per part using traditional means.

Steering Gear Mount

The steering gear is used to convert rotational motion of the steering wheel into the linkages moving the road wheels. The steering gear mount, as you can guess, is a bracket used to mount the steering gear.

This design was pretty complicated geometrically speaking, so Omni3D used the CF PA-12 in combination with a soluble support material to allow them to print the tricky geometry without needing to worry about manually stripping support material later. Again Factory 2.0 NET printer by Omni3D was in use. Paweł Robak – CEO Omni3D

The older mount design was made with aluminium and would have cost 2000 PLN to manufacture. With 3D printing, they were able to produce their new mount, for a cost of just 230 PLN and coming in at 206 grams of mass, shedding a whole kilogram compared to the metal version.

steering gear mount
Optimized and printed (Image credit: Omni3D)

Joint Boot

Joint boots (or “gaiters”) fit over the constant velocity joint and keep the joint protected from dirt and other contaminants. Typically joint boots are made from some kind of rubber or silicone to allow the boot to flex as the joint moves. Normally gaiters and bellows and rubbery sheaths of this nature are made by dip molding a machined mandrell into liquid rubber.

Instead of using rubber and dip molding, the team opted for printing with the TPU-93A filament due to its high strength, flexibility and chemical resistance.

Filaments like TPU are suitable for reduction of vibration, shocks and impact, so they are ideal for printing flexible components exposed to bending and compression, just like these boots.

boot gaitor
A boot (or gaiter) (Image credit: Omni3D)

The joint boots are smaller than the other components shown here, and so were printed on a smaller printer. The boots were printed on the Omni200 desktop printer, whose 200mmx200mm build platform and 400°C nozzle were ideally suited for the task of printing the small boots.

The boots took just 5h 23 min to print, compared to the many weeks lead time usually needed for fabricating a mandrel and dip molding the products.

Happy Customers

PRz Racing Team seems very happy with the reduced cost, lead times and weight of their new components.

“The characteristics of the suggested filaments proved to be perfect for the final production of parts for the new racing car of PRz Racing Team, the PMT-03,” said Bartłomiej Zachara, Team Leader PRz Racing Team.

“We hope that this will contribute to the Team’s future success on racing tracks.”

We also hope so too, and we wish them the best of luck with their new (lighter) machine!

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Swiss Steel Group’s Ugitech Introduces Custom Wire for 3D Metal Printing

Swiss Steel Group and its French subsidiary Ugitech have launched UGIWAM wire, a new product designed for wire arc additive manufacturing (WAAM). The... read more »

3D Printing Metal
Swiss Steel Group's Ugitech Introduces Custom Wire for 3D Metal Printing

QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

QIDI Tech has introduced the QIDI Q2, a compact, beginner-friendly desktop 3D printer engineered to bring professional-grade capabilities into the home. Designed as... read more »

3D Printers
QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

Purdue University's Composites Manufacturing and Simulation Center has partnered with Thermwood to combine predictive simulation technology with large-scale 3D printing for composite parts... read more »

News
Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Daniel Rau, an assistant professor of mechanical engineering at the University of Wyoming, has received a $198,932 grant from the National Science Foundation... read more »

Materials
University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Researchers led by Mejia et al. have developed a real-time monitoring and control system for direct ink write (DIW) 3D printing of thermosetting... read more »

Materials
Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Central Saint Martins Graduate Creates 3D Printed Tennis Balls

Central Saint Martins graduate Noé Chouraqui has developed Point, a 3D-printed tennis ball made from bio-based, recyclable filament. The balls maintain the traditional... read more »

News
Central Saint Martins Graduate Creates 3D Printed Tennis Balls

ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

Researchers at ETH Zurich and the University Hospital of Zurich have developed a new type of cardiac patch designed to both seal and... read more »

Medical
ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

The Royal Air Force has installed its first internally manufactured 3D printed component on an operational Typhoon fighter jet at RAF Coningsby this... read more »

Aerospace
RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

Researchers from the University of California, Irvine and Japan's Okayama and Toho universities have published findings about how chitons develop their exceptionally hard... read more »

Materials
Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

3D Printed Modular Bridge Displayed at Venice Exhibition Features Demountable Design

A 3D-printed concrete bridge called Diamanti has been unveiled at the Time, Space, Existence exhibition in Venice as part of a research collaboration... read more »

Construction
3D Printed Modular Bridge Displayed at Venice Exhibition Features Demountable Design

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing