3D Printing
News Videos Newsletter Contact us
Home / Filament / How To Compare The Real Cost of Filaments for 3D Printing
qidi

How To Compare The Real Cost of Filaments for 3D Printing

December 11, 2016

Comparing cost of filament

Comparing cost of filament can get down right confusing. Most filament is sold by weight, but different manufacturers offer different their products in a variety of weights, some in Kilograms and others in pounds or fractions thereof. In addition, some materials are denser (heavier) than others. How then, to compare the cost of using one filament vs another?

There are five major factors in getting to the real cost of printing with one filament vs another:

  1. price
  2. density of filament
  3. print density (infill strategy, shell layers, etc.)
  4. waste per print (setup, purging, cleaning)
  5. risk of botched print (variable extrusion behavior of filament, printing settings, integrity of .STL file, etc.)

The first three factors are specific and can be used to calculate base costs. (Factors 4 & 5 are subject to the printer hardware, file and other factors, so we will save comments on them for another article.)

Volume Matters… Not Weight!

What really matters in calculating the costs of printing is the cost per volume of print; ie cubic inch or cubic centimeter.

Doing the math for comparing say 1 Kg reel of ABS vs a 1 lb reel of Polycarbonate can be a hair pulling experience; so we have done the math for you. You will find below a simple equation for calculating the actual cost of a solid printed cube (1 inch by 1 inch by 1 inch) to determine a filament’s cost per cubic inch.

How To Calculate The Cost of a Solid Cubic Inch of Filament

Here is what you need to calculate:

  1. filament type
  2. weight per reel
  3. price
  4. filament density (specific gravity)

You can fill in your selected filament type, price and weight, and quickly get accurate cost and volume numbers that allow you to do real comparisons.

Example 1:

Filament type: ABS
Weight per reel: 1.0 Kg
Price: $50.00
Specific Gravity: 1.045*

*Specific gravity is the ratio of a material’s density to the density of water. One cubic centimeter of water weights one gram.

Here’s how to use this data. Fill in the bolded parts of the following equation:

cost per cubic inch =

16.39 cubic centimeters/ cubic inch x (SPECIFIC GRAVITY ) x (PRICE per Kg) divided by 1,000 cubic cm per Kg.

Or, for prices quoted in lbs:

16.39 cubic centimeters/ cubic inch x (SPECIFIC GRAVITY ) x (PRICE per Lb) divided by
454.5 cubic cm per Lb.

In this case, insert $50.00 and 1.045 in this equation and you get:

16.39 cubic centimeters/ cubic inch x (1.045) x ($50.00 per Kg) divided by 1,000 cubic cm per Kg = $0.86 per cubic inch

Example 2:

Filament type: Polycarbonate
Weight per reel: 1 lb.
Price: $45.00
Specific Gravity: 1.21

16.39 cubic centimeters/ cubic inch x (1.21) x ($45 per Lb) divided by 454.5 cubic cm per Lb. =
$1.96 per cubic inch.

If you were going to print 100% solid objects, the polycarbonate would be more than twice the cost per cubic inch. Factoring for the percentage infill will reduce the cost per cubic inch for both filaments. Because Polycarbonate exhibits higher mechanical strength, you may decide to use a lower infill and fewer outer layer shells, which would reduce the actual printed cost per cubic inch. This is often appropriate, when using higher performance, engineering grade filaments, such as polycarbonate, ULTEM and PEEK. I will cover this in more detail in a future article.

Related Story
PEEK 3D Printing – Everything you need to know
ULTEM 3D Printers and Filament Guide
Related Story
ULTEM 3D Printers and Filament Guide

Enclosed below is a chart of specific gravity for most commonly used filaments and some high performance, engineering grade filaments for comparison.

Specific Gravity Chart:

You can see that a filament’s density can have a major effect on its cost relative to another filament on a volume basis.

So before you compare filaments on price, make sure to check their specific gravity values so you can compare them on a cost per volume basis; which is what really matters when printing 3D objects.

CONVENTIONAL FILAMENTS SPECIFIC GRAVITY HIGH PERFORMANCE FILAMENTS SPECIFIC GRAVITY
PLA 1.24 CARBON FIBER ABS 1.18-.140*
ABS 1.04 CARBON FIBER NYLON 1.30-1.50*
TPU 1.23 – 1.55 ULTEM 9085 1.34
POLYCARBONATE 1.21 PEEK 1.31

* range estimate based on % CF

Helpful Conversions:

There are 1,000 grams in one Kilogram. There are 1,000 cubic centimeters of water in a Kilogram of water.

There number of cubic centimeters in a Kilogram of filament equals the 1,000 cubic centimeters
multiplied by the specific gravity of the specified filament.

There are 2.2 lbs in 1 Kg.

There are 16.39 cubic cm in a cubic inch.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Farsoon and Stark Future Complete KLINGA Project, Producing Over 1,000 Titanium Parts

Farsoon Europe GmbH and Stark Future have completed the KLINGA Project, a collaborative engineering initiative that produced more than 1,000 titanium parts using... read more »

3D Printing Metal
Farsoon and Stark Future Complete KLINGA Project, Producing Over 1,000 Titanium Parts

Swiss Steel Group’s Ugitech Introduces Custom Wire for 3D Metal Printing

Swiss Steel Group and its French subsidiary Ugitech have launched UGIWAM wire, a new product designed for wire arc additive manufacturing (WAAM). The... read more »

3D Printing Metal
Swiss Steel Group's Ugitech Introduces Custom Wire for 3D Metal Printing

QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

QIDI Tech has introduced the QIDI Q2, a compact, beginner-friendly desktop 3D printer engineered to bring professional-grade capabilities into the home. Designed as... read more »

3D Printers
QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

Purdue University's Composites Manufacturing and Simulation Center has partnered with Thermwood to combine predictive simulation technology with large-scale 3D printing for composite parts... read more »

News
Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Daniel Rau, an assistant professor of mechanical engineering at the University of Wyoming, has received a $198,932 grant from the National Science Foundation... read more »

Materials
University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Researchers led by Mejia et al. have developed a real-time monitoring and control system for direct ink write (DIW) 3D printing of thermosetting... read more »

Materials
Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Central Saint Martins Graduate Creates 3D Printed Tennis Balls

Central Saint Martins graduate Noé Chouraqui has developed Point, a 3D-printed tennis ball made from bio-based, recyclable filament. The balls maintain the traditional... read more »

News
Central Saint Martins Graduate Creates 3D Printed Tennis Balls

ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

Researchers at ETH Zurich and the University Hospital of Zurich have developed a new type of cardiac patch designed to both seal and... read more »

Medical
ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

The Royal Air Force has installed its first internally manufactured 3D printed component on an operational Typhoon fighter jet at RAF Coningsby this... read more »

Aerospace
RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

Researchers from the University of California, Irvine and Japan's Okayama and Toho universities have published findings about how chitons develop their exceptionally hard... read more »

Materials
Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing