3D Printing
News Videos Newsletter Contact us
Home / Medical / Researchers Grow Brain in 3D Printed Microfluidic Bioreactor
qidi

Researchers Grow Brain in 3D Printed Microfluidic Bioreactor

April 8, 2021

Microfluidic systems may be small, but they’re likely to be among the fastest growing applications for 3D printing in the coming years due to their low cost of entry and production. Researchers at the Indian Institute of Technology Madras and MIT recently developed a 3D printed microfluidic organoid bioreactor that allows for nutrient perfusion and direct observation of specific cells, and it costs only $5 to print.

In their paper published in Biomicrofluidics, the authors explain that their “fully standalone compact bioreactor system provides an ideal organoid culture environment with controlled temperature and media flow, avoids any chance of contamination, and an imaging chamber that allows tracking of a particular cell as it grows, which was very difficult with other techniques.” That’s a lot of details so let’s unpack it for clarity.

Our design costs are significantly lower than traditional petri dish- or spin-bioreactor-based organoid culture products. In addition, the chip can be washed with distilled water, dried, and autoclaved and is, therefore, reusable. Ikram Khan, graduate of Indian Institute of Technology Madras and founder of the cellular imaging and diagnostic startup ISMO Biophotonics

Making a More Organic Organoid

Organoids are “biological systems grown in vitro and are observed to self-organize into 3D cellular tissues of specific organs.” They’re simulated organs used to study diseases and the effects of potential treatments, usually pharmaceutical. They come in a variety of formats but microfluidic systems are common for their flexibility. The conventional method of fabricating the microfluidic systems, however, greatly limited their functionality and increased the time and cost to make them. On top of that, they have to be sealed off in order to avoid contamination, meaning there’s no way to get anything in and out after they’re closed. That’s why the research team developed a 3D printed “microfluidic chip and bioreactor, to enable in situ tracking and imaging of brain organoids on-chip.” 

A small lesson in Latin will help to understand the type of research unlocked by their device: ‘in vivo’ means ‘within the living’ and refers to testing on animals and humans, ‘in vitro’ means ‘in glass’ and refers to tests on cells in petri dishes, and ‘in situ’ means ‘in its original place.’ In situ lies between the other research methods, where recreations of organs allow researchers to observe cellular activity in the context of its natural environment without actually being inside a living organism. That makes the research much more cost effective while still maintaining a high degree of accuracy when it comes to the biological test results.

organoid
An organoid grown in a microfluidic bioreactor (Image credit: MIT and IIT Madras)<br />

In Animo

In a conventional in vitro test, “as the organoid grows bigger, its core does not get enough nutrient supply and gas exchange, thereby triggering cell death.” Their printed bioreactor solves that problem with its microfluidic channels that can deliver nutrients and remove gases even as the organoid grows. “One advantage offered by our microfluidic device is that it allows constant perfusion of the culture chamber, which more closely mimics a physiological tissue perfusion than conventional culture, and thus reduces cell death at the organoid core,” explained Khan.

Khan and his team were able to grow an organoid of human brain cells for an entire week in their bioreactor, steadily pumping nutrients in and out just like they would flow in the vessels of a living brain. The organoid wasn’t dying after seven days, either. And because they designed the bioreactor to be observable with a microscope, they could see that it had filled the space of the device and was forming into a ventricle-like structure that, according to Chloé Delépine at MIT, looked a lot like the cavities found in real brains. Furthermore, the surrounding tissue appeared similar to the cellular configuration of a neocortex. All from a $5 SLA 3D print. Wild stuff. Khan launched ISMO Biophotonics with the goal of employing this type of technology to research and develop treatments for Alzheimer’s, Parkinson’s, and other diseases of the brain and nervous system.

fluid dynamics
Related Story
AM Brings Unparalleled Design Freedom to Fluid Dynamics
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Cameron Naramore
Cameron is a 3D printer and CNC operator. He's fond of cooking, traveling, and science fiction.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

NAMI Partners with Lockheed Martin to 3D Print Aerospace Components in Saudi Arabia

National Additive Manufacturing and Innovation Company (NAMI) has entered into a collaboration agreement with Lockheed Martin to qualify and produce critical military and... read more »

Aerospace
NAMI Partners with Lockheed Martin to 3D Print Aerospace Components in Saudi Arabia

Fraunhofer, MacLean-Fogg, and Toyota Develop Large-Scale 3D Printing System for Automotive Die Casting Molds

The Fraunhofer Institute for Laser Technology ILT has partnered with powder manufacturer MacLean-Fogg and Toyota to develop a 3D printing solution for manufacturing... read more »

3D Printing Metal
Fraunhofer, MacLean-Fogg, and Toyota Develop Large-Scale 3D Printing System for Automotive Die Casting Molds

ASTM International Approves New Standard to Streamline AM Processes

ASTM International's additive manufacturing technologies committee (F42) has approved a new standard designed to help businesses navigate the procurement and delivery of 3D... read more »

News
ASTM International Approves New Standard to Streamline AM Processes

Trek Launches 3D Printed AirLoom Saddle Line

Trek has introduced its first 3D-printed saddle series, the Aeolus AirLoom, featuring what the company calls AirLoom lattice technology. The new design updates... read more »

News
Trek Launches 3D Printed AirLoom Saddle Line

QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

QuesTek Innovations has partnered with a global niobium producer to develop a high-temperature alloy designed for additive manufacturing. The project targets aerospace and... read more »

3D Printing Metal
QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

Autodesk Research and Additive Tectonics Develop 3D Printed Floor System with Alternative Materials

Autodesk Research has partnered with Additive Tectonics to develop a new approach to concrete floor construction using 3D printing technology. The collaboration combines... read more »

Construction

NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

The National Renewable Energy Laboratory (NREL) has installed a new laser-powered metal 3D printer at its Flatirons Campus to support marine energy device... read more »

3D Printing Metal
NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

Apple Adopts 3D Printing for Titanium USB-C Ports in New iPhone Air

Apple’s latest smartphone release marks a quiet but notable step in consumer electronics manufacturing: the company has confirmed that its new iPhone Air... read more »

3D Printing Metal
Apple Iphone 17 air

GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

GKN Aerospace announced the expansion of its Newington, Connecticut facility to include a new production line for additively manufactured Fan Case Mount Ring... read more »

Aerospace
GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

UltiMaker Launches Secure 3D Printing Line for Defense Applications

UltiMaker has introduced its Secure Line of 3D printing products specifically designed for defense and high-security environments. The initial lineup includes the UltiMaker... read more »

News
UltiMaker Launches Secure 3D Printing Line for Defense Applications

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing