3D Printing
News Videos Newsletter Contact us
Home / Medical / Topology Optimization for Compliant Medical Devices
qidi

Topology Optimization for Compliant Medical Devices

September 1, 2020

If you just place an orthopedic implant into a human being without considering the flexibility of the replacement bone, then you risk what is known as “stress shielding”.

This is due to a phenomenon called “Wolff’s Law”, where the natural bone becomes less dense due to the variations in stress from the implant. The surrounding bone adapts to the stress and remodels its mesostructure via a process of bone resorption. The mismatch between the material densities and flexibilities can result in dense growth areas of the bone and can result in pain for the patient, and ultimately rejection and removal of the implant.

It is therefore important to ensure that the replacement implant matches the flexibility of the bone being replaced. Load carrying implants must be compliant.

One method of doing this is by use of topology optimization and additive manufacturing, where the trabecular structures of the bone can be replicated (to some degree). It’s better than a solid titanium bone, basically. The trabecular beams in the implant allow a certain amount of flex, while remaining lightweight and comfortable for the implantee.

The image below shows the difference in bone loss between a solid titanium femoral implant, and a fully porous 3D printed titanium one.

Solid vs. Porous Implant
Solid vs. Porous Implant. Image credit: Journal of Orthopaedic Research

Another point worth noting is that solid structures have difficulty with osseointegration. A porous structure allows the bone to merge with the implant better.

All in all, porous, printed metal structures have a lot to offer the world of prosthetics.

Let’s take a look at the behaviour of some of these structures under load, and how engineers are making solid, inflexible materials such as titanium… flexible!

The image below shows a Von Mises plot of a 3D printed lattice structure undergoing compression.

von mises
Von Mises Stress / deformation plot. Image credit: <a href="https://ntopology.com/" rel="noopener noreferrer" target="_blank">nTopology</a>

If this was a solid lump of titanium, there would be no flexibility. Take that lump of titanium, and roll it into a thin wire, and it is flexible.

This is effectively what we are seeing in the image above. The individual members in the lattice have enough flexibility to deflect under load, while remaining within the undeformed. The beams bend back into place when the load is removed, just like any other Hookean material.

When you stack these beams up, like in the lattice, then the total deflection is basically the cumulative deflection of the individual members. One layer deflects and the remaining force is sent into the layer below, which deflects, and so on…

By investigating the stress and displacement parameters at differing compression values, the stress and displacement fields can be combined mathematically into a function.

Localized stress field
Localized stress field. Image credit: <a href="https://ntopology.com/" rel="noopener noreferrer" target="_blank">nTopology</a>

Once that function is determined, engineers can tune the structure computationally (with topology optimization or generative design) to provide a custom set of outputs for a specific batch of inputs, perfectly tailored to the patient’s needs.

parameters custom mesostructure
Change parameters to get custom mesostructure. Image credit: <a href="https://ntopology.com/" rel="noopener noreferrer" target="_blank">nTopology</a>

As you can see in the image above, the parameters of interest in this case are the displacement target, maximum/minimum force, and amount of material removal required.

The end result is a custom mesostructure that can flex and deflect according to the designer’s requirements, and a happy implant patient who can now walk comfortably without worrying about needing their femur or hip bone changed again in another 5 or 10 years.

3d systems implant
Related Story
3D Printing for Spines
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

COBOD Launches Multifunctional Construction Robot with Shotcrete 3D Printing Capabilities

COBOD International has introduced what it describes as the first commercially available multifunctional construction robot, developed in collaboration with Technische Universität Braunschweig. The... read more »

Construction
COBOD Launches Multifunctional Construction Robot with Shotcrete 3D Printing Capabilities

MIT Engineers Develop Implantable Device for Emergency Diabetes Treatment

MIT researchers have developed an implantable device that can automatically release glucagon when blood sugar levels drop dangerously low in Type 1 diabetes... read more »

Medical
MIT Engineers Develop Implantable Device for Emergency Diabetes Treatment

University of Pennsylvania Researchers Develop Carbon-Capturing Concrete

Researchers at the University of Pennsylvania have created a new type of concrete that captures carbon dioxide while maintaining structural integrity. The material... read more »

Construction

Dutch 3D Printing Startup Novenda Technologies Raises $6.1M for Dental Manufacturing Platform

Dutch startup Novenda Technologies has secured $6.1 million in Series A funding to advance its multi-material 3D printing platform for dental products. The... read more »

Dental

Singapore Startup Creates Limited Edition 3D-Printed Collectibles from Recycled Plastic Bottles

Singapore-based startup Unigons has launched a limited collection of 3D-printed Merlion figurines made from recycled plastic bottles. The company produced 60 pieces of... read more »

News
Singapore Startup Creates Limited Edition 3D-Printed Collectibles from Recycled Plastic Bottles

Designer Uses Robotic 3D Printing to Create Dual-Purpose Dog Furniture

Designer Liam de la Bedoyere has developed the Dog Hut Side Table, a piece of furniture that combines a resting space for dogs... read more »

News
Designer Uses Robotic 3D Printing to Create Dual-Purpose Dog Furniture

Scientists 3D Print Solar-Powered Sponge for Seawater Desalination

Researchers have developed a 3D-printed aerogel material that uses sunlight to convert seawater into drinking water. The sponge-like structure contains microscopic vertical channels... read more »

News

Revopoint Launches Major Prime Event 2025 Sale with Up to 40% Off 3D Scanners and Accessories

Revopoint is kicking off its Prime Event 2025 with a series of major discounts on its range of professional 3D scanners and accessories.... read more »

News

Turkish Companies Test 3D Printed Component for Armored Vehicles

MetalWorm and Nurol Makina, both based in Ankara, Turkey, have completed testing of an armored vehicle component manufactured using Directed Energy Deposition (DED)... read more »

3D Printing Metal
Turkish Companies Test 3D Printed Component for Armored Vehicles

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing