3D Printing
News Videos Newsletter Contact us
Home / 3D Printing Metal / 3D Printed Liquid Rocket Injector Head Reduces Weight, Heat, and Lead Times
revopoint

3D Printed Liquid Rocket Injector Head Reduces Weight, Heat, and Lead Times

July 27, 2020

When the engineers at the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt, or DLR) Institute of Structures and Design were tasked with designing the liquid rocket engine injector head for the European Union Horizon 2020 project called SMall Innovative Launcher for Europe (SMILE Project), they turned to 3D printing knowing that it could easily handle the complex design.

3D Printed Liquid Rocket Injector Head Reduces
The metal printed injector head features a 30:1 parts count reduction and 10% weight reduction.

In rocketry, solid fuel is a common propellant because it burns more predictably than liquid fuels and it can be stored for long periods without much degradation. Modern rocketry has embraced reusability, and since solid fuels do significant damage to the rocket, liquid fuels are the preferred option for today’s reusable rockets. Refurbishing and reusing rockets allows DLR to offer more cost-effective options for small satellite launchers. But reusability comes at the cost of increased complexity, which is why the team turned to AM.

Managers of the DLR team Markus Kuhn and Ilja Müller partnered with 3D Systems’ Customer Innovation Center (CIC) in Leuven, Belgium to design the injector head. “Based on the success of space related initiatives involving DMP (Direct Metal Printing), we thought that 3D Systems was perfectly suited for providing the design-for-manufacturing aspects of the injector head, with an eye on new possibilities for sensor integration and fuel and coolant distribution,” said Kuhn. By 3D printing the injector head, they were able to reduce the assembly’s parts from 30 to 1, achieving a weight reduction of 10%. The monolithic component is not only stiffer and lighter but also includes cooling channels that improve efficiency and propulsion. As it’s printed in LaserForm Ni718 (A), an Inconel alloy, it’s resistant to oxidation and corrosion. That’s especially important because the injector head is where the fuel and the oxidizer enter the combustion chamber. The material performs well at cryogenic temperatures up to 700°C, which is equally important since it’ll be going into space.

Koen Huybrechts, a project engineer for 3D Systems, knew that their design had performance-enhancing features that could only be produced with a highly accurate metal 3D printer so he helped the DLR team choose the ideal technology – Direct Metal Printing.

  • Direct Metal Printing Design Guide Direct Metal Printing Design Guide

    This guide starts with the basics of how metal powder is sintered by lasers and expands on design techniques to drive efficiency.

    Learn More
  • NuVasive Taps AM Ecosystem to Optimize Spine Implant Technology NuVasive Taps AM Ecosystem to Optimize Spine Implant Technology

    Spinal device company goes from additive manufacturing novice to full product line of optimized 3D printed implants in one year.

    Learn More
  • Metal 3D Printed Conformally-Cooled Injection Mold Increases Production Rate by 30% Metal 3D Printed Conformally-Cooled Injection Mold Increases Production Rate by 30%

    3D Systems’ metal AM and Cimatron mold design software deliver mold inserts that dramatically reduce cooling cycles.

    Learn More
  • Optimize Fluid Dynamics with 3D Printing Optimize Fluid Dynamics with 3D Printing

    3D printing has enabled unprecedented improvements in fluid dynamics applications..

    Learn More

Beyond improving mechanical and thermal performance, consolidating the injector head down to a single part drastically shortened the lead time of production by bypassing the sourcing and assembling of all of those different parts. The benefits don’t stop there. Without the design restrictions imposed by traditional manufacturing methods, the engineers could implement coaxial injection techniques that optimize oxidizer-fuel mixing via a double-swirl shape. Such a shape would be next to impossible to manufacture without 3D printing.

Computational simulations indicated that the design produced favorable mixing and combustion efficiencies, and hot-fire testing of the printed part showed the same results, validating both the accuracy of simulating 3D printable designs and the functionality of the 3D printed injector head itself. Müller doesn’t mince words about the benefits of using AM for this project, stating, “We think we can safely say that the integrated functionalities of the 3D printed injector head are superior and the production times and costs lower when compared to state-of-the-art equivalent parts manufactured via conventional methods.”

Images courtesy of 3D Systems

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Cameron Naramore
Cameron is a 3D printer and CNC operator. He's fond of cooking, traveling, and science fiction.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Thought3D Launches Magigoo Glide Kit and Supergrip to Improve 3D Print Adhesion

Thought3D just introduced two new products designed to meet evolving needs in additive manufacturing. The Magigoo Glide Kit and Magigoo Supergrip respond to... read more »

News
Thought3D Launches Magigoo Glide Kit and Supergrip to Improve 3D Print Adhesion

3D Printed Electric Motorcycle by DAB Motors Inspired by Akira’s Iconic Bike

DAB Motors and Vita Veloce Team (VVT) have unveiled a custom electric motorcycle featuring 3D printed bodywork inspired by the iconic bike from... read more »

Automotive

3DEImention Launches Automated Depowdering and Part Extraction System for High-Volume 3D Printing

Three years ago, a client turned to Avner Dei, 3DEImention CEO, seeking a metal printer capable of 5,000 parts per month. While the... read more »

News
3DEImention Launches Automated Depowdering and Part Extraction System for High-Volume 3D Printing

Revopoint Trackit Launches on Kickstarter with Marker-Free 3D Scanning

3D models play a critical role across industries—from virtual reality to advanced manufacturing—but high costs, complex setup, and lengthy workflows often limit access... read more »

News
Revopoint Trackit Launches on Kickstarter with Marker-Free 3D Scanning

High School Student Develops Low-Cost 3D Printed Drone

Cooper Taylor, a 17-year-old student, has created a cost-effective vertical take-off and landing (VTOL) drone using 3D-printed components. Taylor's design addresses efficiency concerns... read more »

Aerospace
High School Student Develops Low-Cost 3D Printed Drone

3D Printed Flower-Shaped Amphitheater Blooms on Venice’s San Servolo Island

Mario Cucinella Architects (MCA) has unveiled a 3D printed amphitheater titled "A Flower in San Servolo" on Venice's San Servolo Island. The open-air... read more »

Construction
3D Printed Flower-Shaped Amphitheater Blooms on Venice's San Servolo Island

Lyten Unveils Motorsports Initiative for 3D Graphene Supermaterials in Racing

Lyten has announced the launch of Lyten Motorsports in partnership with INDYCAR Experience. The new venture aims to apply Lyten's 3D Graphene technology... read more »

Automotive
Lyten Unveils Motorsports Initiative for 3D Graphene Supermaterials in Racing

Peak Technology Acquires Jinxbot to Enhance Additive Manufacturing for Deep Tech OEMs

Peak Technology has acquired Jinxbot 3D Printing, expanding its additive manufacturing capabilities. The acquisition adds Jinxbot's high-mix, rapid-turn prototyping services to Peak's existing... read more »

News
Peak Technology Acquires Jinxbot to Enhance Additive Manufacturing for Deep Tech OEMs

Canadian Navy Extends Submarine Lifespan with 3D Printed Parts

Dalhousie University has partnered with Defence Research and Development Canada (DRDC) to address critical parts supply challenges for Canada's aging submarine fleet. The... read more »

Military

Hands-On Review: Revopoint MetroX 3D Scanner

Revopoint has recently released their professional 3D scanner, the “ Revopoint MetroX 3D Scanner”. We have spent a couple of months putting the... read more »

News
Hands-On Review: Revopoint MetroX 3D Scanner

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing