3D Printing
News Videos Newsletter Contact us
Home / News / 3D Printed Antennas to Bring 5G & 6G to Remote Areas
qidi

3D Printed Antennas to Bring 5G & 6G to Remote Areas

January 17, 2023

Engineers at the University of Sheffield (UK) have developed 3D printed mmWave radio aerials (antennas) that could bring stronger mobile phone signals and faster internet connections to remote communities.

Read on to know more about it.

mmWave

Millimeter wave (mmWave) is a type of electromagnetic wave that falls within the millimeter range of the electromagnetic spectrum (hence the name). It has a wavelength between 1 millimeter and 1 meter and a frequency range of 30 GHz to 300 GHz.

These waves are used in a range of applications, including wireless communications, radar, and imaging. They are particularly useful for high-frequency, high-bandwidth applications, such as 5G and 6G mobile networks, as they have a large amount of available bandwidth. However, mmWaves do not travel as far as lower frequency waves, and can be easily blocked by physical objects, so they require line-of-sight and a high density of small cell base stations to provide coverage.

Currently, the aerials (British English for “antennas”) used in telecommunication networks are labor intensive and therefore costly to manufacture when using traditional means. Using the usual methods of fabrication, these aerials can cost hundreds of dollars to manufacture.

The researchers at Sheffield developed their design to be produced cheaper and faster by use of additive manufacturing.

You can see the comparison of the radiation pattern plots produced by the old and new aerials in the image below. This shows how the new printed aerials are almost identical in terms of performance when compared to aerials manufactured the old way. As you can see, the gain and time domain response of the 3D-printed antennas is almost indistinguishable from those manufactured traditionally.

Comparison of radiation patterns
Comparison of radiation patterns of printed and non-printed aerials. (Image credit: University of Sheffield)

The has developed and produced the antenna that can be produced quickly and inexpensively while still providing comparable performance to traditional antennas.

Conductive Silver

These printed antennas were designed and fabricated by the University’s Department of Electronic and Electrical Engineering. They were printed using silver nanoparticles, which possess exceptional electrical characteristics.

Although the original source does not specify the exact 3D printing method used to create these antennas, there are several options available for printing with silver nanoparticles, such as extrusion methods, direct ink writing (DIW), and jetting processes.

The use of silver nanoparticles allows for the rapid and cost-effective production of high-performing antennas, which could have important implications for the telecommunications industry.

Silver nanoparticle antennas
Silver nanoparticle antennas. (Image credit: University of Sheffield)

They have been tested at a range of frequencies used by 5G and 6G networks at the university’s UKRI National mmWave Measurement Lab, which can measure systems on chip and antennas up to 110GHz.

The quick and cheap means of producing the antennas means that not only will they become more accessible, but will allow quicker iterations by researchers looking to improve the designs.

“This 3D-printed design could be a game changer for the . It enables us to prototype and produce antennas for 5G and 6G networks at a far lower cost and much quicker than the current manufacturing techniques,” said Eddie Ball, researcher at the Communications Research Group,University of Sheffield.

“The design could also be used to produce antennas on a much larger scale and therefore have the capability to cover more areas and bring the fastest mobile networks to parts of the world that have not yet had access.”

This method could greatly accelerate the development of new 5G and 6G infrastructure.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

NAMI Partners with Lockheed Martin to 3D Print Aerospace Components in Saudi Arabia

National Additive Manufacturing and Innovation Company (NAMI) has entered into a collaboration agreement with Lockheed Martin to qualify and produce critical military and... read more »

Aerospace
NAMI Partners with Lockheed Martin to 3D Print Aerospace Components in Saudi Arabia

Fraunhofer, MacLean-Fogg, and Toyota Develop Large-Scale 3D Printing System for Automotive Die Casting Molds

The Fraunhofer Institute for Laser Technology ILT has partnered with powder manufacturer MacLean-Fogg and Toyota to develop a 3D printing solution for manufacturing... read more »

3D Printing Metal
Fraunhofer, MacLean-Fogg, and Toyota Develop Large-Scale 3D Printing System for Automotive Die Casting Molds

ASTM International Approves New Standard to Streamline AM Processes

ASTM International's additive manufacturing technologies committee (F42) has approved a new standard designed to help businesses navigate the procurement and delivery of 3D... read more »

News
ASTM International Approves New Standard to Streamline AM Processes

Trek Launches 3D Printed AirLoom Saddle Line

Trek has introduced its first 3D-printed saddle series, the Aeolus AirLoom, featuring what the company calls AirLoom lattice technology. The new design updates... read more »

News
Trek Launches 3D Printed AirLoom Saddle Line

QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

QuesTek Innovations has partnered with a global niobium producer to develop a high-temperature alloy designed for additive manufacturing. The project targets aerospace and... read more »

3D Printing Metal
QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

Autodesk Research and Additive Tectonics Develop 3D Printed Floor System with Alternative Materials

Autodesk Research has partnered with Additive Tectonics to develop a new approach to concrete floor construction using 3D printing technology. The collaboration combines... read more »

Construction

NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

The National Renewable Energy Laboratory (NREL) has installed a new laser-powered metal 3D printer at its Flatirons Campus to support marine energy device... read more »

3D Printing Metal
NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

Apple Adopts 3D Printing for Titanium USB-C Ports in New iPhone Air

Apple’s latest smartphone release marks a quiet but notable step in consumer electronics manufacturing: the company has confirmed that its new iPhone Air... read more »

3D Printing Metal
Apple Iphone 17 air

GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

GKN Aerospace announced the expansion of its Newington, Connecticut facility to include a new production line for additively manufactured Fan Case Mount Ring... read more »

Aerospace
GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

UltiMaker Launches Secure 3D Printing Line for Defense Applications

UltiMaker has introduced its Secure Line of 3D printing products specifically designed for defense and high-security environments. The initial lineup includes the UltiMaker... read more »

News
UltiMaker Launches Secure 3D Printing Line for Defense Applications

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing