3D Printing
News Videos Newsletter Contact us
Home / News / 3D Printed Synthetic Muscles Allow For Robotics With Realistic Dexterity
qidi

3D Printed Synthetic Muscles Allow For Robotics With Realistic Dexterity

September 20, 2017

The engineers team at Columbia University has managed to create a synthetic muscle that can operate without actuators, compressed air, or pressure regulators. While most robotics require lots of smaller parts and ancillary equipment to function, this one operates on its own.

The components of the hand itself are actually softer than any previous iteration of such a project. This allows it to have a delicate touch whilst being able to lift many 1000 times its own weight. The purpose of this is not only to produce strong robotics but to also allow for machines to conduct operations that require the handling of fragile materials such as medical equipment.

3d-printed-silicone-hd-featured-600
Related Story
An Overview Of Silicone 3D Printing

“This is a big piece of the puzzle and, like biology, the new actuator can be shaped and reshaped a thousand ways. We’ve overcome one of the final barriers to making life-like robots.” said Hod Lipson, lead researcher on the project.

3D Printed Robotics

Robotics 3D Printing Muscles

We’ve previously reported on many stories about prosthetics and mimetic arms. This one is the most intricate version to date. One of the core ways that this is a breakthrough is the mix of strength and softness with minimal weight. Previous robotic limbs have always suffered from these problems in one way or another.

The robotic arm achieves this impressive design feature due to its materials and core components. It consists of a silicone rubber matrix containing microbubbles of ethanol that acts as a muscle. The muscle actuates when a resistive wire allows a low power charge to pass through it. This works in the same way as the contraction and expansion of the networks of tissue within the human body.

Robotics Columbia University
Soft artificial muscle. The muscle is composed of ethanol distributed throughout the solid silicone elastomer matrix. (L) Electrically actuated muscle including thin resistive wire in a rest position on a human hand. (R) Expanded muscle actuated using low power – By Aslan Miriyev/Columbia Engineering

The entire process of creating a machine with such intricate parts could not be possible without 3D printing. Due to the advances in engineering technology, the researcher developed a super-strong robot that has 15 times more strain density than human muscle tissue. With advances in robotics on the hardware and AI front, it’s just a matter of time till engineers will be able to mix them together for a new wave of automated industrial technology.

Featured image retrieved from University of Houston.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Laser-Assisted Cold Spray Technology Enhances Material Deposition Process

Researchers at the University of Cambridge's Center for Industrial Photonics have developed a new additive manufacturing technique called laser-assisted cold spray (LACS). The... read more »

3D Printing Metal
Laser-Assisted Cold Spray Technology Enhances Material Deposition Process

Titomic Netherlands Secures Strategic Funding to Advance Cold Spray 3D Printing Technology

Titomic Limited, an Australian company specializing in cold spray additive manufacturing, has received €800,000 in funding from the Netherlands' 3D Print Kompas program.... read more »

3D Printing Metal
Titomic Netherlands Secures Strategic Funding to Advance Cold Spray 3D Printing Technology

3D-Printed Insects Help Scientists Map the Limits of Mimicry in Nature

Researchers at the University of Nottingham have developed a method to 3D print life-sized, color-accurate insect models for biological research. The team, led... read more »

Environmental

University of Hong Kong Scientists Explore Growing Organs with 3D Printing Technology

Researchers at the University of Hong Kong (HKU) are working to combine 3D-printed respiratory tissue with lab-grown organoids to create functional airways for... read more »

Bioprinting
University of Hong Kong Scientists Explore Growing Organs with 3D Printing Technology

SHINING 3D Unveils EinScan Rigil with Tri-Mode Scanning for Pro-sumer Flexibility

SHINING 3D has launched its newest flagship 3D scanner, the EinScan Rigil — touted as the world’s first 3D scanner featuring Tri-Mode operation... read more »

News
SHINING 3D Unveils EinScan Rigil with Tri-Mode Scanning for Pro-Level Flexibility

ETH Zurich 3D Prints Recycled Plastic Structure for Swiss Ice Cream Shop

ETH Zurich students have completed a 3D-printed ice cream shop in the Swiss Alpine village of Mulegns. The project, called Gelateria, was designed... read more »

Construction
ETH Zurich 3D Prints Recycled Plastic Structure for Swiss Ice Cream Shop

Hugo Launches 3D Printed Loafers with Zellerfeld

Hugo, the younger brand under Hugo Boss, has partnered with 3D printing company Zellerfeld to create a fully 3D-printed loafer. The shoe is... read more »

Fashion
Hugo Launches 3D Printed Loafers with Zellerfeld

3D Printed Resin Combines Rubber Flexibility with Plastic Strength, Surprising Scientists

Researchers at the University of Texas at Austin have developed a 3D printing method that can create objects with both soft and hard... read more »

News
3D Printed Resin Combines Rubber Flexibility with Plastic Strength, Surprising Scientists

LPE Supports Queen’s Propulsion Laboratory with 3D Printed Rocket Engine Chamber

Students at Queen's University Belfast have developed what they describe as Ireland's first student-built liquid rocket engine. The Kelvin Mk.1, named after Belfast-born... read more »

3D Printing Metal
LPE Supports Queen’s Propulsion Laboratory with 3D Printed Rocket Engine Chamber

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing