3D Printing
News Videos Newsletter Contact us
Home / News / 3D Printed Wireless Sensor Devices Overview
revopoint

3D Printed Wireless Sensor Devices Overview

December 26, 2022

Do you fancy printing yourself some wireless sensor devices for use in your IoT or robotics applications?

If the answer is “yes”, or even “maybe”, then we have good news for you, because some researchers at Simon Fraser University, British Columbia, have just published a paper taking a look at the various methods for doing so.

The paper, which has been published in the ACS Applied Electronic Materials journal, takes a look at several different types of physical sensor including pressure, strain and temperature sensors. In addition, chemical type sensors such as biomedical and environmental sensors are examined. These sensors are intended to be used as part of wireless sensing systems such as RF and RFID tags.

As well as summarizing the various printed sensor types, the researchers examine the various types of printing methods with which you can print the various sensors.

Let’s take a look at some of them.

Pressure

Mechanical pressure sensing has applications in a wide range of domains ranging from posture recognition, to monitoring pressure in aerospace vehicles, to measuring fluid tank pressurization.

Sensing mechanisms for pressure sensing include resistive or capacitive measurement methods. When pressure is applied to the sensor, the change in resistance or capacitance can be monitored wirelessly. Via experimentation, the relation between applied pressure and changes in resistance or capacitance can be monitored and used in the desired applications.

These sensors are relatively simple, requiring just a track of conductive material that changes resistance or capacitance when the force is applied.

You can see one such example in the image below, that uses copper nanowires extruded with a direct writing method onto a flexible substrate. When the pressure was applied to the sensor, the printed copper nanowires became deformed, and the contact area between the adjacent nanowire geometries increased, leading to a decrease in resistance. The resistance change was monitored in a resonant circuit and those values were recorded wirelessly.

The printing method permitted the easy fabrication of the sensors in larger quantities at low cost.

Printed copper nanowires
Printed copper nanowires, one way of printing pressure sensors. (Image credit: ACS Applied Electronic Materials)

Temperature

Temperature sensing is obviously fairly important, and the ability to do it wirelessly has benefits especially in hazardous or isolated environments. One example in the paper makes use of printed dipole antennas.

By using the direct ink writing (DIW) printing method one team of researchers printed an RF dipole antenna on polyethylene terephthalate (PET) and PDMS substrate.

sensing dipole
Printed temperature sensing dipole. (Image credit: ACS Applied Electronic Materials)

They then added a temperature reading chip to the RF dipole antenna to achieve temperature measurement, which was communicated with a reader antenna. This setup was used to monitor the temperature of plant leaves (seen above).

Biomedical

Low cost biomedical sensors are useful, especially in these days of wearables and smart medical devices. Nobody wants to carry a heavy battery and computer around all day, afterall.

One of the printed sensors in the paper makes use of a printed RF sensor patch with multiparameter sensing. The transponder includes a miniaturized antenna for energy harvesting and communication with a remote RF interrogator, a microchip for data sampling and signal modulation, and several sensing elements.

The sensing elements are printed on a biocompatible membrane that can absorb biofluids such as sweat or drugs as they are released. The resulting epidermal wireless RF sensor can perform different sensing of local skin features such as temperature, strain, sweat loss, and pH.

Regional body temperature, strain, and pressure can also be detected as part of the mini sensor suite.

Printed multi-sensor
Printed multi-sensor suite for biomedical applications. (Image Credit: ACS Applied Electronic Materials)

The summary paper looks at multiple examples of various sensors that may be of interest to researchers, and the authors note that there are still certain limitations for the printed RF sensors.

Low conductivity of printed inks is one of the biggest hurdles. This can be overcome with post processing such as electroplating, but this must be factored in when considering the cost to benefit ratio of such things.

The researchers conclude that the optimum path for this area of research is to focus on development of highly conductive and reliable inks.

You can read the paper titled “Printed Wireless Sensing Devices using Radio Frequency Communication” over at this link.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

ASTM International Teams with Major Manufacturers to Create Additive Manufacturing Certification

ASTM International's Additive Manufacturing Center of Excellence (AM CoE) has introduced a new manufacturer certification program aimed at improving quality assurance and process... read more »

News
ASTM International Teams with Major Manufacturers to Create Additive Manufacturing Certification

Egypt to Boost Domestic Spare Parts Production with Additive Manufacturing

Egypt's Arab Organization for Industrialization (AOI) hosted a workshop on June 2nd, 2025, to advance the localization of industrial spare parts manufacturing using... read more »

News
Egypt to Boost Domestic Spare Parts Production with Additive Manufacturing

3D Printing Breakthrough Reduces Waste While Enabling Complex Designs

MIT engineers have developed a new 3D printing resin that forms two different types of solids depending on the light used. The material... read more »

Materials
3D Printing Breakthrough Reduces Waste While Enabling Complex Designs

Magnetic 3D Printed Pen Shows Promise for Parkinson’s Diagnosis

Researchers have developed a 3D-printed pen containing magnetic ink that may help identify Parkinson's disease through handwriting analysis. The device captures motion patterns... read more »

News

Deuter Introduces New Mountain Bike Pack with 3D Printed Spine Protection

German pack manufacturer Deuter has launched the Hiline, a new mountain bike hydration pack featuring 3D-printed spine protection technology. The pack is specifically... read more »

News
Deuter Introduces New Mountain Bike Pack with 3D Printed Spine Protection

UltiMaker Launches S6 3D Printer

UltiMaker has announced the release of the S6 3D printer, designed specifically for engineers, manufacturing teams, and maintenance crews. The new printer focuses... read more »

News
UltiMaker Launches S6 3D Printer

Thought3D Launches Magigoo Glide Kit and Supergrip to Improve 3D Print Adhesion

Thought3D just introduced two new products designed to meet evolving needs in additive manufacturing. The Magigoo Glide Kit and Magigoo Supergrip respond to... read more »

News
Thought3D Launches Magigoo Glide Kit and Supergrip to Improve 3D Print Adhesion

3D Printed Electric Motorcycle by DAB Motors Inspired by Akira’s Iconic Bike

DAB Motors and Vita Veloce Team (VVT) have unveiled a custom electric motorcycle featuring 3D printed bodywork inspired by the iconic bike from... read more »

Automotive

3DEImention Launches Automated Depowdering and Part Extraction System for High-Volume 3D Printing

Three years ago, a client turned to Avner Dei, 3DEImention CEO, seeking a metal printer capable of 5,000 parts per month. While the... read more »

News
3DEImention Launches Automated Depowdering and Part Extraction System for High-Volume 3D Printing

Revopoint Trackit Launches on Kickstarter with Marker-Free 3D Scanning

3D models play a critical role across industries—from virtual reality to advanced manufacturing—but high costs, complex setup, and lengthy workflows often limit access... read more »

News
Revopoint Trackit Launches on Kickstarter with Marker-Free 3D Scanning

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing