3D Printing
Contact us
Home / News / 3D Printed Wireless Sensor Devices Overview
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

3D Printed Wireless Sensor Devices Overview

December 26, 2022

Do you fancy printing yourself some wireless sensor devices for use in your IoT or robotics applications?

If the answer is “yes”, or even “maybe”, then we have good news for you, because some researchers at Simon Fraser University, British Columbia, have just published a paper taking a look at the various methods for doing so.

The paper, which has been published in the ACS Applied Electronic Materials journal, takes a look at several different types of physical sensor including pressure, strain and temperature sensors. In addition, chemical type sensors such as biomedical and environmental sensors are examined. These sensors are intended to be used as part of wireless sensing systems such as RF and RFID tags.

As well as summarizing the various printed sensor types, the researchers examine the various types of printing methods with which you can print the various sensors.

Let’s take a look at some of them.

Pressure

Mechanical pressure sensing has applications in a wide range of domains ranging from posture recognition, to monitoring pressure in aerospace vehicles, to measuring fluid tank pressurization.

Sensing mechanisms for pressure sensing include resistive or capacitive measurement methods. When pressure is applied to the sensor, the change in resistance or capacitance can be monitored wirelessly. Via experimentation, the relation between applied pressure and changes in resistance or capacitance can be monitored and used in the desired applications.

These sensors are relatively simple, requiring just a track of conductive material that changes resistance or capacitance when the force is applied.

You can see one such example in the image below, that uses copper nanowires extruded with a direct writing method onto a flexible substrate. When the pressure was applied to the sensor, the printed copper nanowires became deformed, and the contact area between the adjacent nanowire geometries increased, leading to a decrease in resistance. The resistance change was monitored in a resonant circuit and those values were recorded wirelessly.

The printing method permitted the easy fabrication of the sensors in larger quantities at low cost.

Printed copper nanowires
Printed copper nanowires, one way of printing pressure sensors. (Image credit: ACS Applied Electronic Materials)

Temperature

Temperature sensing is obviously fairly important, and the ability to do it wirelessly has benefits especially in hazardous or isolated environments. One example in the paper makes use of printed dipole antennas.

By using the direct ink writing (DIW) printing method one team of researchers printed an RF dipole antenna on polyethylene terephthalate (PET) and PDMS substrate.

sensing dipole
Printed temperature sensing dipole. (Image credit: ACS Applied Electronic Materials)

They then added a temperature reading chip to the RF dipole antenna to achieve temperature measurement, which was communicated with a reader antenna. This setup was used to monitor the temperature of plant leaves (seen above).

Biomedical

Low cost biomedical sensors are useful, especially in these days of wearables and smart medical devices. Nobody wants to carry a heavy battery and computer around all day, afterall.

One of the printed sensors in the paper makes use of a printed RF sensor patch with multiparameter sensing. The transponder includes a miniaturized antenna for energy harvesting and communication with a remote RF interrogator, a microchip for data sampling and signal modulation, and several sensing elements.

The sensing elements are printed on a biocompatible membrane that can absorb biofluids such as sweat or drugs as they are released. The resulting epidermal wireless RF sensor can perform different sensing of local skin features such as temperature, strain, sweat loss, and pH.

Regional body temperature, strain, and pressure can also be detected as part of the mini sensor suite.

Printed multi-sensor
Printed multi-sensor suite for biomedical applications. (Image Credit: ACS Applied Electronic Materials)

The summary paper looks at multiple examples of various sensors that may be of interest to researchers, and the authors note that there are still certain limitations for the printed RF sensors.

Low conductivity of printed inks is one of the biggest hurdles. This can be overcome with post processing such as electroplating, but this must be factored in when considering the cost to benefit ratio of such things.

The researchers conclude that the optimum path for this area of research is to focus on development of highly conductive and reliable inks.

You can read the paper titled “Printed Wireless Sensing Devices using Radio Frequency Communication” over at this link.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Latest posts

Report Shows Construction 3D Printing Can Mitigate Effects of Climate Change

Cement and concrete are two of the most widely used resources in the world, second only to water, and their demand is expected... read more »

1 day ago Construction
wasp 3mt concrete

International Consortium to Promote Use of 3D Printed Metals in Construction

The Politecnico di Milano is leading a "ConstructAdd", an international consortium of partners in developing metal 3D printing techniques to improve energy efficiency... read more »

2 days ago 3D Printing Metal
Tensile test specimen

3D Printed Superyacht Concept Unveiled

Designer Jozeph Forakis has recently unveiled the world's first 3D printed superyacht, the 88-metre Pegasus concept. The yacht is designed to be sustainable... read more »

2 days ago News
superyacht

Creality Launches Huge CR-M4 – The Next Big Thing in Quality Printing

Creality has just released its new FDM 3D printer, the CR-M4, with rigid stability and a HUGE build volume. The CR-M4 is being... read more »

2 days ago 3D Printers
cr-m4

3D Printed Geodesic Labyrinth Arises in France

A 3D printed labyrinth has been erected in the medieval town of Chateaugiron, in the north-west of France, marking the first time that... read more »

4 days ago Art
Labyrinth by night.

Researchers Use Digital Twin for DED Optimization

A group of researchers from Tokyo University of Science and Suwa University of Science, in Japan, have collaborated with TOCALO Co. Ltd. to... read more »

6 days ago 3D Printing Metal
digital twin

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
  • Twitter Twitter 3D Printing

3D Printer Categories

  • Desktop 3D Printers
  • Industrial 3D Printers
  • Geeetech Mizar S Geeetech Mizar S
    255 x 255 x 260 mm
    $279
    Buy Now
  • Modix BIG-60 Modix BIG-60
    600 x 600 x 660 mm
    $4,900
    Buy Now
  • Geeetech Mizar Pro Geeetech Mizar Pro
    220 x 220 x 260 mm
    $219
    Buy Now
  • Fusion3 F410 Fusion3 F410
    355 x 355 x 315 mm
    $4,599
    Buy Now
  • Geeetech Mizar M Geeetech Mizar M
    255 x 255 x 260 mm
    $399
    Buy Now
  • gCreate gMax 2 PRO (with enclosure) gCreate gMax 2 PRO (with enclosure)
    457 x 457 x 609 mm
    $5,295
    Buy Now
  • Geeetech THUNDER Geeetech THUNDER
    250 x 250 x 260 mm
    $489
    Buy Now
  • Geeetech A30T Geeetech A30T
    320 x 320 x 420 mm
    $449
    Buy Now
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

  • LaserForm Maraging Steel (A) LaserForm Maraging Steel (A)
    Aerospace parts, Automotive high-wear parts, Cooling channels, Furnace parts, Tooling
    Heat resistant
    View Details
  • Tungsten (A) Tungsten (A)
    Components for imaging equipment, Ion generation equipment, Static weight distribution components
    Corrosion resistant, Heat resistant, Ionizing radiation absorption
    View Details
  • A6061-RAM2 (A) A6061-RAM2 (A)
    Light weight structural parts, RF parts for satellites
    High strength, Lightweight, Ductile
    View Details
  • Certified CuNi30 (A) Certified CuNi30 (A)
    Cryogenic suspension and support systems, Pipe fittings, Valves
    Corrosion resistant, Low temperature resistance
    View Details
  • Modix BIG Meter Modix BIG Meter
    1010 x 1010 x 1010 mm
    from $13,500
    Request a Quote
  • Modix BIG-120Z Modix BIG-120Z
    600 x 600 x 1200 mm
    from $7,500
    Request a Quote
  • Industry MAGNUM Industry MAGNUM
    1500 x 1200 x 1200 mm
    €159.000
    Request a Quote
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Company Information

  • What is 3D Printing?
  • Contact us
  • 3D Printing Service
  • Newsletter
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers

Featured Companies

  • Modix
  • 3D Systems
  • Industry
  • Geeetech

Featured Reviews

  • Anycubic Photon M3
  • Flashforge Creator 3
  • Flashforge Creator 3 Pro
  • Craftbot FLOW IDEX XL
  • BIQU B1
2023 — Strikwerda en Dehue
  • Home
  • Service
  • Materials
  • Contact us
Featured Companies
  • Modix
  • 3D Systems
  • Industry
  • Geeetech
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
Company Information
  • What is 3D Printing?
  • Contact us
  • 3D Printing Service
  • Newsletter
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Details
Close