3D Printing
News Videos Newsletter Contact us
Home / News / Adaptive 3D Printing System Developed to Handle and Assemble Living Organisms
qidi

Adaptive 3D Printing System Developed to Handle and Assemble Living Organisms

August 24, 2024

Researchers at the University of Minnesota Twin Cities have developed an innovative adaptive 3D printing system capable of identifying and positioning randomly distributed organisms. This autonomous technology promises to significantly improve processes in cryopreservation, cybernetics, bioimaging, and the development of devices that incorporate living organisms by saving both time and resources.

Advancing Bio-Integration with Autonomous Technology

This adaptive 3D printing system marks a significant advancement in the precise handling of living organisms. The system can autonomously track, collect, and accurately position organisms, whether they are stationary or in motion. By utilizing real-time visual and spatial data, the technology adapts to ensure exact placement, which is essential for applications that require integrating organisms with materials or devices. The research is published in *Advanced Science*, a peer-reviewed scientific journal, highlighting the system’s potential impact across various fields. Additionally, the researchers have filed a patent for this innovative technology, further emphasizing its novelty and potential to transform current practices.

Adaptive 3D Printing System Developed to Handle and Assemble Living Organisms
The adaptive 3D printing system identifies randomly positioned organisms and safely relocates them to designated spots. (Image Credit: McAlpine Research Group, University of Minnesota.)

Guebum Han, the lead author of the study and a former postdoctoral researcher in mechanical engineering at the University of Minnesota, explained the functionality of the system: “The printer itself can act like a human would, with the printer acting as hands, the machine vision system as eyes, and the computer as the brain. The printer can adapt in real-time to moving or still organisms and assemble them in a certain array or pattern.”

Traditionally, such tasks have been performed manually, requiring extensive training and often resulting in inconsistencies. The new system reduces the time needed for these processes and enhances the consistency of results, which could be particularly beneficial in fields like cryopreservation, where the accurate handling of organisms is critical. Moreover, the technology can sort live organisms from deceased ones, place organisms on curved surfaces, and integrate them with materials and devices in customizable shapes. It also has the potential to create complex arrangements, such as superorganism hierarchies, which are organized structures seen in insect colonies like ants and bees.

Applications and Future Potential

This technology could change several biological and engineering fields by increasing the efficiency of cryopreservation, enabling the sorting of live organisms from deceased ones, and facilitating the integration of organisms on various surfaces, including curved ones. The system also holds potential for creating complex organism arrangements, such as superorganism hierarchies found in insect colonies.

For instance, the research team demonstrated that this system could improve cryopreservation methods for zebrafish embryos, completing the process 12 times faster than traditional manual methods. Additionally, the system’s adaptive capabilities were showcased in experiments where it successfully tracked, picked up, and placed randomly moving beetles, integrating them with functional devices.

Looking ahead, the researchers aim to combine this technology with robotics, potentially making it portable for field research. This advancement could allow scientists to collect and process organisms in environments that are currently difficult to access. The work also has broader implications for advancing autonomous biomanufacturing by enabling the evaluation and assembly of living organisms in new and innovative ways.

Support and Collaboration

This innovative work was a collaborative effort involving several members of the University of Minnesota Department of Mechanical Engineering, including graduate research assistants Kieran Smith and Daniel Wai Hou Ng, Assistant Professor JiYong Lee, Professor John Bischof, Professor Michael McAlpine, and former postdoctoral researchers Kanav Khosla and Xia Ouyang. The project also received support from the Engineering Research Center (ERC) for Advanced Technologies for the Preservation of Biological Systems (ATP-Bio). Funding for the research was provided by the National Science Foundation, the National Institutes of Health, and Regenerative Medicine Minnesota.

Next Steps in Biotech Innovation

The adaptive 3D printing system developed by the University of Minnesota represents a significant advancement in the handling and assembly of living organisms. By automating the process and enhancing precision, this technology could have far-reaching implications for fields ranging from cryopreservation to autonomous biomanufacturing. The continued development and integration of this system with robotics could further expand its applications, making it a valuable tool for researchers in diverse scientific disciplines.

Source: cse.umn.edu

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

HeyGears Introduces Multi-Material 3D Printed Dentures

HeyGears demonstrated its Multi-Material Fusion resin 3D printed dentures at LMT LAB DAY Chicago 2025. The technology uses Digital Light Processing (DLP) photopolymerization... read more »

Dental
HeyGears Introduces Multi-Material 3D Printed Dentures at Chicago Lab Event

3D Printed Modular Column “Duality of Skin and Core” Featured at Venice Biennale 2025

A 3D printed modular column titled "Duality of Skin and Core" is currently on display at the Venice Biennale 2025 as part of... read more »

Art
3D Printed Modular Column "Duality of Skin and Core" Featured at Venice Biennale 2025

Bentley Unveils EXP 15 Design Concept Featuring 3D Printed Titanium Finishes

Bentley Motors has revealed its EXP 15 concept vehicle at the opening of its new design studio in Crewe. The five-meter concept model... read more »

Automotive
Bentley Unveils EXP 15 Design Concept Featuring 3D Printed Titanium Finishes

COBOD Launches Multifunctional Construction Robot with Shotcrete 3D Printing Capabilities

COBOD International has introduced what it describes as the first commercially available multifunctional construction robot, developed in collaboration with Technische Universität Braunschweig. The... read more »

Construction
COBOD Launches Multifunctional Construction Robot with Shotcrete 3D Printing Capabilities

MIT Engineers Develop Implantable Device for Emergency Diabetes Treatment

MIT researchers have developed an implantable device that can automatically release glucagon when blood sugar levels drop dangerously low in Type 1 diabetes... read more »

Medical
MIT Engineers Develop Implantable Device for Emergency Diabetes Treatment

University of Pennsylvania Researchers Develop Carbon-Capturing Concrete

Researchers at the University of Pennsylvania have created a new type of concrete that captures carbon dioxide while maintaining structural integrity. The material... read more »

Construction

Dutch 3D Printing Startup Novenda Technologies Raises $6.1M for Dental Manufacturing Platform

Dutch startup Novenda Technologies has secured $6.1 million in Series A funding to advance its multi-material 3D printing platform for dental products. The... read more »

Dental

Singapore Startup Creates Limited Edition 3D-Printed Collectibles from Recycled Plastic Bottles

Singapore-based startup Unigons has launched a limited collection of 3D-printed Merlion figurines made from recycled plastic bottles. The company produced 60 pieces of... read more »

News
Singapore Startup Creates Limited Edition 3D-Printed Collectibles from Recycled Plastic Bottles

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing