3D Printing
News Videos Newsletter Contact us
Home / News / AM Prototypes and Generative Design Builds a better Bow
revopoint

AM Prototypes and Generative Design Builds a better Bow

April 23, 2021

When we hear the term generative design, our minds often turn immediately to 3D printing. This is totally understandable, the two technologies do go together quite well.

But it’s easy to overlook the application of generative design to more traditional methods of manufacturing such as CNC machining.

In this post, we’ll be taking a look at a new bow from Japan that has taken advantage of generative design, 3D printing and machining to create a high performing, lightweight bow.

bow
Generative design and CNC makes a pretty, organic looking bow (Image credit: Nishikawa Seiki)

Generative design uses an algorithmic approach to generating structural geometry, based on certain load conditions in the design space. The software will create various iterations of geometries that satisfy the required conditions, growing the geometry from the ground up ultimately providing the designer with multiple options to work with.

This is opposed to topology optimisation, which effectively uses finite element analysis (or similar) to determine load paths, and identify regions of material that can be removed (either manually or automatically).

Both types of design tools have largely the same goals (lightweight, strong and stiff structures) but just go about it differently.
This bow was designed with generative design by Nishikawa Seiki Co. Ltd., a Tokyo metalwork company specializing in precision parts for a range of industries.

The company president, Yoshihisa Nishikawa is a huge archery fan and has a range of bows available through his Nishikawa Archery subsidiary. The archery division specializes in bows machined at his own metalwork company.

In particular, his latest developments have focused on the bow riser. The riser is the part of the bow in the middle and includes the grip and mounting points for the rest of the bow structure.

Nishikawa bows
Evolution of the Nishikawa bows, with the generative designed models being on the right (Image credit: Nishikawa Seiki)

This custom riser is designed to reduce the oscillations caused on release of the arrow, which allows for a smoother (and more accurate) shot. Typically a heavier bow can reduce the oscillations, but this can be off putting to local archery fans.

Thankfully, generative design has provided a solution enabling a reduction of that weight while also reducing the oscillations.

“Top archers train hard to strengthen their core and tend to favor heavier bows, as they reduce wobbling,” said Nishikawa.

“Newcomers to archery are often frustrated by the weight of the bow, and soon they quit. Of course, there are lighter bows out there, too, but they are harder to aim. If we could make a light high-performance bow, weight could be added to the liking of each archer. I felt this was the sensible approach to our work.”

The researchers at the university used 3D positioning to measure the bowstring as it was drawn, and used that data to create equations showing the load for different shots.

This load information was fed into the generative design software (Autodesk Fusion 360) and the researchers were able to select the best iteration from the generated designs.

Early iterations were prototyped using additive manufacturing, as you can see in the image below.

Generatively designed bows
Generatively designed, then 3D printed prototyping (Image credit: Nishikawa Seiki)

After the prototypes had been verified they were ultimately manufactured on a 5-axis CNC machining centre.

The end result of the generativity designed part was a 50% reduction in part weight, and vibration levels comparable to leading designs currently available on the market.

While there is room for improvement, the company has its eyes on the future and plans to expand both globally, and into new professional users.

“Looking down the road, we hope to use generative design to make recurve bows that can be used in Olympic competition—and compound bows, as well,” said Nishikawa.

Designing for Additive Manufacturing DFAM
Related Story
Designing For Additive Manufacturing (DFAM)
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Thought3D Launches Magigoo Glide Kit and Supergrip to Improve 3D Print Adhesion

Thought3D just introduced two new products designed to meet evolving needs in additive manufacturing. The Magigoo Glide Kit and Magigoo Supergrip respond to... read more »

News
Thought3D Launches Magigoo Glide Kit and Supergrip to Improve 3D Print Adhesion

3D Printed Electric Motorcycle by DAB Motors Inspired by Akira’s Iconic Bike

DAB Motors and Vita Veloce Team (VVT) have unveiled a custom electric motorcycle featuring 3D printed bodywork inspired by the iconic bike from... read more »

Automotive

3DEImention Launches Automated Depowdering and Part Extraction System for High-Volume 3D Printing

Three years ago, a client turned to Avner Dei, 3DEImention CEO, seeking a metal printer capable of 5,000 parts per month. While the... read more »

News
3DEImention Launches Automated Depowdering and Part Extraction System for High-Volume 3D Printing

Revopoint Trackit Launches on Kickstarter with Marker-Free 3D Scanning

3D models play a critical role across industries—from virtual reality to advanced manufacturing—but high costs, complex setup, and lengthy workflows often limit access... read more »

News
Revopoint Trackit Launches on Kickstarter with Marker-Free 3D Scanning

High School Student Develops Low-Cost 3D Printed Drone

Cooper Taylor, a 17-year-old student, has created a cost-effective vertical take-off and landing (VTOL) drone using 3D-printed components. Taylor's design addresses efficiency concerns... read more »

Aerospace
High School Student Develops Low-Cost 3D Printed Drone

3D Printed Flower-Shaped Amphitheater Blooms on Venice’s San Servolo Island

Mario Cucinella Architects (MCA) has unveiled a 3D printed amphitheater titled "A Flower in San Servolo" on Venice's San Servolo Island. The open-air... read more »

Construction
3D Printed Flower-Shaped Amphitheater Blooms on Venice's San Servolo Island

Lyten Unveils Motorsports Initiative for 3D Graphene Supermaterials in Racing

Lyten has announced the launch of Lyten Motorsports in partnership with INDYCAR Experience. The new venture aims to apply Lyten's 3D Graphene technology... read more »

Automotive
Lyten Unveils Motorsports Initiative for 3D Graphene Supermaterials in Racing

Peak Technology Acquires Jinxbot to Enhance Additive Manufacturing for Deep Tech OEMs

Peak Technology has acquired Jinxbot 3D Printing, expanding its additive manufacturing capabilities. The acquisition adds Jinxbot's high-mix, rapid-turn prototyping services to Peak's existing... read more »

News
Peak Technology Acquires Jinxbot to Enhance Additive Manufacturing for Deep Tech OEMs

Canadian Navy Extends Submarine Lifespan with 3D Printed Parts

Dalhousie University has partnered with Defence Research and Development Canada (DRDC) to address critical parts supply challenges for Canada's aging submarine fleet. The... read more »

Military

Hands-On Review: Revopoint MetroX 3D Scanner

Revopoint has recently released their professional 3D scanner, the “ Revopoint MetroX 3D Scanner”. We have spent a couple of months putting the... read more »

News
Hands-On Review: Revopoint MetroX 3D Scanner

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing