3D Printing
News Videos Newsletter Contact us
Home / News / Bioprinted Muscles Can Contract After Just 10 Days of Growth
qidi

Bioprinted Muscles Can Contract After Just 10 Days of Growth

September 21, 2023

Researchers at the Terasaki Institute in Los Angeles have pioneered a new approach to advance 3D bioprinted muscle constructs, offering hope for more effective muscle transplants in the future. Their method involves incorporating microparticles loaded with insulin-like growth factor (IGF) into a bioink containing myoblast cells and a gelatin-based hydrogel.

The integration of IGF-loaded microparticles, achieved through a microfluidic platform, has yielded impressive results. After 3D printing, the muscle constructs exhibit significant improvements in cell growth, elongation, and alignment. In some instances, these engineered muscles even exhibited spontaneous contractions after just ten days of incubation. This achievement marks a promising step toward the development of fully functional lab-created muscle transplants for patients in need.

Bioprinted Muscles Can Contract After Just 10 Days of Growth
Bioprinted muscles offer hope. (Image Credit: Terasaki Institute)

The significance of this work lies in addressing the critical role of skeletal muscle in human mobility and daily life. When injuries or diseases necessitate the removal of muscle tissue, it profoundly impacts a patient’s quality of life. Traditional treatments involve invasive procedures, such as transplanting healthy muscle from other areas of the body, which can lead to complications and incomplete recovery.

By leveraging 3D bioprinting and slow-release growth factors like IGF, researchers are steering myoblast cells toward a skeletal muscle phenotype within the constructs. This approach mimics the natural behavior of muscle cells, fostering elongation and alignment.

“The sustained release of IGF-1 facilitates the maturation and alignment of muscle cells, which is a crucial step in muscle tissue repair and regeneration,” said Ali Khademhosseini, a researcher involved in the study.

“There is great potential for using this strategy for the therapeutic creation of functional, contractile muscle tissue.”

The potential for engineered muscles to contract further underscores the promise of this technology, which is paving the way for more effective and less invasive muscle transplants, offering hope for improved outcomes and quality of life for patients facing muscle-related challenges.

You can read the research paper titled “Enhanced Maturation of 3D Bioprinted Skeletal Muscle Tissue Constructs Encapsulating Soluble Factor-Releasing Microparticles” at this link.

Come and let us know your thoughts on our Facebook, Twitter, and LinkedIn pages, and don’t forget to sign up for our weekly additive manufacturing newsletter to get all the latest stories delivered right to your inbox.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
banner
banner
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • Creality Hi Combo

    • - Print size: 260 x 260 x 300 mm
    • - up to 16-color printing
    More details »
    $399.00 Creality
    Buy Now
  • Flashforge Guider 3 Ultra

    • - Print size: 330 x 330 x 600 mm
    • - dual extruder system
    More details »
    $2,999.00 Flashforge
    Buy Now
  • Anycubic Kobra S1 Combo

    • - Print size: 250 x 250 x 250 mm
    • - budget multicolor printing
    More details »
    $429.00 Anycubic
    Buy Now
  • Snapmaker U1

    • - Print size: 270 x 270 x 270 mm
    • - multi-color printing with SnapSwap
    More details »
    $849.00 Snapmaker
    Buy Now
  • Flashforge Adventurer 5M

    • - Print size: 220 x 220 x 220 mm
    • - 600mm/s travel speed
    More details »
    $299.00 Flashforge
    Buy Now
  • Creality K2 Plus

    • - Print size: 350 x 350 x 350 mm
    • - multi-color printing
    More details »
    $1,199.00 Creality
    Buy Now
  • Anycubic Photon Mono M7

    • - Print size: 223 x 126 x 230 mm
    • - 10.1 inch 14K screen
    More details »
    $279.00 Anycubic
    Buy Now
  • Flashforge AD5X

    • - Print size: 220 x 220 x 220 mm
    • - dual extrusion system
    More details »
    $399.00 Flashforge
    Buy Now
  • Qidi Q2

    • - Print size: 270 x 270 x 256 mm
    • - enclosed heated chamber up to 65°C
    More details »
    $580.00 Qidi
    Buy Now
  • Qidi Max 4

    • - Print size: 390 x 390 x 340 mm
    • - active cooling air control
    More details »
    $1,219.00 Qidi
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2026 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing