3D Printing
News Videos Newsletter Contact us
Home / News / Bioprinted Tubules Simulate Kidney Functions & Diseases
qidi

Bioprinted Tubules Simulate Kidney Functions & Diseases

March 5, 2019

Harvard’s Wyss Institute and their work with printed proximal bioprinted tubules help to reintroduce good molecules into the bloodstream. Aside from simulating the kidney’s functions, the research may also allow for the testing of treatments and diseases.

The kidneys carry out a very crucial function, i.e. that of maintaining the relative hygiene of the blood. They keep out waste, salt and excess fluid build-up thanks to intricate networks of filtration units. They also reintroduce beneficial material into circulate. A large part of this is due to the proximal tubules which reintroduce the molecules after they’re filtered by the glomeruli, which remove the excess water and waste. The bioprinted tubules are now allowing the researchers to simulate the effects of drugs, chemicals and diseases on the kidneys. The trials have been quite promising.

Related Story
3D Printed Heart Marks a Breakthrough in Bioprinting

“We construct these living renal devices in a few days and they can remain stable and functional for months,” said Neil Lin, Ph.D., who is a Roche Fellow and Postdoctoral Fellow on Lewis’ team. “Importantly, these 3D vascularized proximal tubules exhibit the desired epithelial and endothelial cell morphologies and luminal architectures, as well as the expression and correct localization of key structural and transport proteins, and factors that allow the tubular and vascular compartments to communicate with each other.”

Simulating A Printed Organ

Bioprinted Tubules Simulate Kidney Functions & Diseases

The findings are particularly useful for the pharmaceutical industry, as it can already simulate and test various chemicals. The team has monitored the effects of hyperglycemia by artificially inducing high-glucose effects on the bioprinted tubules. This helps them monitor the effects of diseases like diabetes by circulating glucose at 4 times higher than normal concentrations. They even passed drugs through to inhibit the effects of rampant glucose among the cells, noticing positive effects.

“We found that high levels of glucose transported to endothelial cells in the vascular compartment caused cell damage,” said Kimberly Homan, Ph.D., Research Associate at the Wyss Institute and SEAS. “By circulating a drug through the tubule that specifically inhibits a major glucose transporter in proximal tubule epithelial cells, we prevented those harmful changes from happening to the endothelial cells in the adjacent vessels.”

The bioprinted tubules could be instrumental in screening drugs and conducting trials far faster. It is, sadly, not a complete solution yet. While the simulations can only test a particular organ and not the whole body, it’s a miraculous discovery nonetheless. The tissues also have the ability to augment dialysis in patients, according to the researchers. Perhaps they could also illuminate the process of filtration outside of biology as well. The research has a lot of potential and could aid treatment for millions of patients around the world.

Featured image courtesy of Wyss Institute.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

3D-Printed Insects Help Scientists Map the Limits of Mimicry in Nature

Researchers at the University of Nottingham have developed a method to 3D print life-sized, color-accurate insect models for biological research. The team, led... read more »

Environmental

University of Hong Kong Scientists Explore Growing Organs with 3D Printing Technology

Researchers at the University of Hong Kong (HKU) are working to combine 3D-printed respiratory tissue with lab-grown organoids to create functional airways for... read more »

Bioprinting
University of Hong Kong Scientists Explore Growing Organs with 3D Printing Technology

SHINING 3D Unveils EinScan Rigil with Tri-Mode Scanning for Pro-Level Flexibility

SHINING 3D has launched its newest flagship 3D scanner, the EinScan Rigil — touted as the world’s first 3D scanner featuring Tri-Mode operation... read more »

News
SHINING 3D Unveils EinScan Rigil with Tri-Mode Scanning for Pro-Level Flexibility

ETH Zurich 3D Prints Recycled Plastic Structure for Swiss Ice Cream Shop

ETH Zurich students have completed a 3D-printed ice cream shop in the Swiss Alpine village of Mulegns. The project, called Gelateria, was designed... read more »

Construction
ETH Zurich 3D Prints Recycled Plastic Structure for Swiss Ice Cream Shop

Hugo Launches 3D Printed Loafers with Zellerfeld

Hugo, the younger brand under Hugo Boss, has partnered with 3D printing company Zellerfeld to create a fully 3D-printed loafer. The shoe is... read more »

Fashion
Hugo Launches 3D Printed Loafers with Zellerfeld

3D Printed Resin Combines Rubber Flexibility with Plastic Strength, Surprising Scientists

Researchers at the University of Texas at Austin have developed a 3D printing method that can create objects with both soft and hard... read more »

News
3D Printed Resin Combines Rubber Flexibility with Plastic Strength, Surprising Scientists

LPE Supports Queen’s Propulsion Laboratory with 3D Printed Rocket Engine Chamber

Students at Queen's University Belfast have developed what they describe as Ireland's first student-built liquid rocket engine. The Kelvin Mk.1, named after Belfast-born... read more »

3D Printing Metal
LPE Supports Queen’s Propulsion Laboratory with 3D Printed Rocket Engine Chamber

Dassault Systèmes and Patrick Jouin Unveil New 3D Printed Chair

Dassault Systèmes and French designer Patrick Jouin have unveiled Ta.Tamu, a 3D-printed chair developed using the company's 3DEXPERIENCE platform. The project represents a... read more »

News
Dassault Systèmes and Patrick Jouin Unveil New 3D Printed Chair

Endemic Architecture Debuts 3D Printed Homes in Rural California

A development of five 3D-printed homes called Corduroy Castles is currently under construction in Olivehurst, California, a rural town in Yuba County located... read more »

Construction
Endemic Architecture Debuts 3D Printed Homes in Rural California

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing