3D Printing
News Videos Newsletter Contact us
Home / News / DOE Exascale Computing Project to Advance Metal AM
qidi

DOE Exascale Computing Project to Advance Metal AM

January 2, 2023

A team of researchers from ORNL, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, NIST and the University of Tennessee, Knoxville have been working on a means to use exascale computing to simulate the development of microstructures as they are 3D printed.

ExaAM

The Exascale Additive Manufacturing (ExaAM) project is backed by the US Department of Energy’s (DOE) Exascale Computing Project (ECP). The goal of ExaAM is to utilize exascale simulation to design additive manufacturing (AM) components with location-specific properties, as well as to improve the performance of AM processes.

The team has specifically focused on the development of the ExaAM tool as a solution for understanding the behavior and performance of metals during metal additive manufacturing processes.

process
<br /> The ExaAM workflow. (Image credit: Turner et al)

The simulations will examine key stages such as melting and solidification, which are essential for creating high-quality, functional parts, the sort favored by the aerospace, nuclear and maritime sectors.

Microstructure

As a metal cools and solidifies during printing, the crystals within it align to form microstructures that give the metal its unique properties as a material. These microstructures, which are the result of the way the atoms are arranged within the metal, play a crucial role in determining the material’s physical and mechanical characteristics.

These characteristics, in turn, will have a significant impact on the overall performance and functionality of the part that is created using the metal. For example, the microstructures of a metal can influence its strength, toughness, ductility, and corrosion resistance, among other properties.

“The purpose of ExaAM is to model the AM manufacturing process—you’ve got heat being deposited, metal melting, metal solidifying, and then you’re going to the next layer with more metal remelting and then solidifying. So, you get all this thermal cycling, which makes for a very complicated process,” said Matt Bement, principal investigator on the ExaAM project.

“Being able to understand how that process gives you a microstructure and what that microstructure tells you about its properties—that’s what we’re trying to do. If you can do that accurately, then you could start printing 3D parts and qualify them for critical missions because you really do understand what it is you just made.”

Combining Software for the Bigger Picture

There are pre-existing simulation codes available for simulating the various stages of a metal AM process, and several of these have been combined together for use in the ExaAM project.

For example, CFD toolbox OpenFOAM has been modified to simulate the melting stage and has been renamed additiveFOAM.

There are a few different tools that can be used to simulate solidification and the resulting microstructures.

For example, ExaConstit is a tool that uses crystal plasticity finite-element methods to calculate the bulk constitutive properties of metals. Constitutive properties refer to the way in which a material responds to external forces or stresses. By using ExaConstit, engineers and designers can get a better understanding of how different metals will behave under various conditions, which can be helpful when selecting the right material for a particular application.

Another solver (Diablo) can be used to simulate the entire part.

When combined, these tools help to understand how different printed materials will behave during the additive manufacturing process, and how they’ll perform once they’re finished.

Naturally, these solvers are computationally intensive at the best of times. When combined, they are incredibly resource hungry.

This is why they require exascale computing to deliver accurate results in realistic timeframes.

In summary, the knowledge gleaned from the ExaAM project will increase understanding of how microstructures are formed, meaning engineers and designers will be able to create parts with the desired characteristics and performance at levels previously unheard of.

Combined with the other fancy toys at ORNL, such as the robotic AM system hooked up to the neutral source we reported on just the other week, it’s fair to say that we are on the cusp of a golden era in terms of having the ability to completely predict metal AM processes from start to finish.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Humtown drives US Manufacturing Comeback with Additive Sand Casting

Humtown Products, an Ohio-based company, is positioning itself to serve manufacturers looking to bring production back to the United States. The company specializes... read more »

News
Humtown drives US Manufacturing Comeback with Additive Sand Casting

Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Oak Ridge National Laboratory has released a comprehensive dataset for its Peregrine software, which monitors and analyzes parts created through powder bed additive... read more »

News
Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Creality Expands Flagship Lineup with K2 and K2 Pro 3D Printers

Creality has announced the launch of the K2 and K2 Pro, two new additions to its high-end K series. Built on a rigid... read more »

3D Printers
Creality Expands Flagship Lineup with K2 and K2 Pro 3D Printers

Farsoon and Stark Future Complete KLINGA Project, Producing Over 1,000 Titanium Parts

Farsoon Europe GmbH and Stark Future have completed the KLINGA Project, a collaborative engineering initiative that produced more than 1,000 titanium parts using... read more »

3D Printing Metal
Farsoon and Stark Future Complete KLINGA Project, Producing Over 1,000 Titanium Parts

Swiss Steel Group’s Ugitech Introduces Custom Wire for 3D Metal Printing

Swiss Steel Group and its French subsidiary Ugitech have launched UGIWAM wire, a new product designed for wire arc additive manufacturing (WAAM). The... read more »

3D Printing Metal
Swiss Steel Group's Ugitech Introduces Custom Wire for 3D Metal Printing

QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

QIDI Tech has introduced the QIDI Q2, a compact, beginner-friendly desktop 3D printer engineered to bring professional-grade capabilities into the home. Designed as... read more »

3D Printers
QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

Purdue University's Composites Manufacturing and Simulation Center has partnered with Thermwood to combine predictive simulation technology with large-scale 3D printing for composite parts... read more »

News
Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Daniel Rau, an assistant professor of mechanical engineering at the University of Wyoming, has received a $198,932 grant from the National Science Foundation... read more »

Materials
University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Researchers led by Mejia et al. have developed a real-time monitoring and control system for direct ink write (DIW) 3D printing of thermosetting... read more »

Materials
Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Central Saint Martins Graduate Creates 3D Printed Tennis Balls

Central Saint Martins graduate Noé Chouraqui has developed Point, a 3D-printed tennis ball made from bio-based, recyclable filament. The balls maintain the traditional... read more »

News
Central Saint Martins Graduate Creates 3D Printed Tennis Balls

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing