3D Printing
News Videos Newsletter Contact us
Home / News / Engineers Demonstrate LPBF Microstructure Modification with Secondary Laser Pass
revopoint

Engineers Demonstrate LPBF Microstructure Modification with Secondary Laser Pass

December 1, 2022

The microstructure of metals printed with LPBF methods can be modified by tweaking certain process parameters while the printing process is underway.

Researchers from the University of Waterloo, Canada, have found that a secondary pass of the laser after the printed section has cooled and solidified can also modify the microstructure of the printed section.

Parameter Effect on Microstructures

Typically, when printing with LPBF methods, the microstructure (grain size and shape) can be altered by varying such parameters as laser scanning speed, power, interlayer rotation, and scanning strategy. All of these tunable parameters directly affect the thermal history and solidification conditions of the printed section, which are linked to factors such as solidification rate, temperature gradient, melt pool size and shape, and others.

Previous research into the effect of tuning the process parameters has shown that changing the speed and power of the laser can result in the formation of coarser grains, as well as a higher percentage of grains forming in preferred directions. Other research teams have demonstrated that changing the scanning strategy to an XY scan can result in anisotropy and more ductility along the build direction. In other cases, it was found that rotating the direction of the scan between layers can significantly influence the grain size and grain aspect ratio.

Remelt

The researchers at the University of Waterloo experimented with a titanium alloy (specifically a plasma atomized Ti-5Al-5Mo-5V-3Cr powder feedstock), which has a wide range of applications in aerospace, although it is used in landing gear design quite a fair bit. It is preferred in aerospace due to its good processability and hardenability.

landing gear component
Typical usage of Ti-5Al-5Mo-5V-3Cr alloy (landing gear component) (Image credit: Sandvik Coromant)

But naturally, additive manufacturing of this alloy has advantages over traditional manufacturing methods such as reduced cost and increased geometric complexity, the latter of which can ultimately contribute to lightweighting.

By passing the laser over the printed sections after they had been printed and had solidified, the researchers were able to modify the microstructure and alter the grain size and direction in-situ.

By immediately passing the laser over the solidified layer a second time, at a lower power than the first pass, it was observed that another thin melt pool had formed on top of the original melt pool. The remelted layer then solidified over the first layer, creating a more uniform solidification pattern than the first, resulting in elongated grains that grew in the direction of the build.

Benefits of Laser Post-Exposure

It was determined that the titanium parts printed with LPBF and then given a post-exposure blast with the laser to initiate remelting were mechanically comparable to parts made with directional solidification processes. That is to say, they had enhanced fatigue and creep resistance, which are definitely properties that are beneficial to aircraft landing gear.

The printed samples were cut, ground, polished and etched, following the standard metallographic sample preparation processes, and examined with an optical microscope to observe the melt pool boundaries. Further analyses were carried out with scanning electron microscopy and electron backscatter diffraction.

Overall it was shown that the samples had uniform and uninterrupted columnar grains with fewer high-angle grain boundaries detected in the vertical growth direction. The average length of the elongated grains was found to be 845 μm and the grains had a higher degree of organization compared to the samples printed without the laser post-exposure treatment.

The researchers point out that this was the first time that in-situ modification with a laser had been carried out, post-solidification, and with the results showing that the printed samples were comparable to directionally solidified parts, it’s definitely a promising means of printing this particular titanium alloy.

You can read the full (open access) paper titled “In-situ microstructure control by laser post-exposure treatment during laser powder-bed fusion” in Additive manufacturing Letters, over at this link.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

3D Printed Metal Molds Poised to Accelerate US Auto Manufacturing

Oak Ridge National Laboratory (ORNL) researchers have demonstrated that 3D-printed metal molds offer significant advantages for producing large composite components for automotive manufacturing.... read more »

Automotive

Auburn-based XO Armor Joins Montgomery TechLab’s Defense Accelerator Program

XO Armor, a company that specializes in on-site 3D printing of custom-fit protective orthotics, has been selected for the first cohort of Montgomery... read more »

News
Auburn-based XO Armor Joins Montgomery TechLab's Defense Accelerator Program

ASTM International Teams with Major Manufacturers to Create Additive Manufacturing Certification

ASTM International's Additive Manufacturing Center of Excellence (AM CoE) has introduced a new manufacturer certification program aimed at improving quality assurance and process... read more »

News
ASTM International Teams with Major Manufacturers to Create Additive Manufacturing Certification

Egypt to Boost Domestic Spare Parts Production with Additive Manufacturing

Egypt's Arab Organization for Industrialization (AOI) hosted a workshop on June 2nd, 2025, to advance the localization of industrial spare parts manufacturing using... read more »

News
Egypt to Boost Domestic Spare Parts Production with Additive Manufacturing

3D Printing Breakthrough Reduces Waste While Enabling Complex Designs

MIT engineers have developed a new 3D printing resin that forms two different types of solids depending on the light used. The material... read more »

Materials
3D Printing Breakthrough Reduces Waste While Enabling Complex Designs

Magnetic 3D Printed Pen Shows Promise for Parkinson’s Diagnosis

Researchers have developed a 3D-printed pen containing magnetic ink that may help identify Parkinson's disease through handwriting analysis. The device captures motion patterns... read more »

News

Deuter Introduces New Mountain Bike Pack with 3D Printed Spine Protection

German pack manufacturer Deuter has launched the Hiline, a new mountain bike hydration pack featuring 3D-printed spine protection technology. The pack is specifically... read more »

News
Deuter Introduces New Mountain Bike Pack with 3D Printed Spine Protection

UltiMaker Launches S6 3D Printer

UltiMaker has announced the release of the S6 3D printer, designed specifically for engineers, manufacturing teams, and maintenance crews. The new printer focuses... read more »

News
UltiMaker Launches S6 3D Printer

Thought3D Launches Magigoo Glide Kit and Supergrip to Improve 3D Print Adhesion

Thought3D just introduced two new products designed to meet evolving needs in additive manufacturing. The Magigoo Glide Kit and Magigoo Supergrip respond to... read more »

News
Thought3D Launches Magigoo Glide Kit and Supergrip to Improve 3D Print Adhesion

3D Printed Electric Motorcycle by DAB Motors Inspired by Akira’s Iconic Bike

DAB Motors and Vita Veloce Team (VVT) have unveiled a custom electric motorcycle featuring 3D printed bodywork inspired by the iconic bike from... read more »

Automotive

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing