3D Printing
News Videos Newsletter Contact us
Home / News / Festo 3D Prints Robotic Ants and Butterflies
qidi

Festo 3D Prints Robotic Ants and Butterflies

April 14, 2015

Festo is an industry leader in advanced robotics and they have presented two of their projects: BionicANTs and eMotionButterfiles only made possible by using laser sintering 3D printing and 3D MID ( Molded Interconnect Device) technology. 3D MID is a control and power system where electrical circuits are attached on the surface of the laser sintered body components during the construction, and they thereby take on design and electrical functions at the same time. In this way, all the technical components can be fitted into or on the 3D printed body and be exactly coordinated with each other for complex actions of a insectoid robot.

BionicANTs

BionicANTS are biomimetic robots that modeled to resemble real ants in anatomy and behaviour. ANT stands for Autonomous Networking Technologies, and they are designed as a sort of small prototype of future applications  the factory floor, where the production systems will be founded on adaptable and intelligent components able to work under a higher overall control hierarchy. Their body as well as software mimic natural behaviour of group of ants working together. Each BionicANT measures 13.5 cm (5.3 in) and runs on two 7.2 V batteries charged when the antennae touch metal bars running along the sides of an enclosure.

Three BionicANTs working together as one mimicking ant behaviour. Source: Festo
Three BionicANTs working together as one mimicking ant behaviour. Source: Festo

Official brochure notes:
“After being put into operation, an external control system is no longer required. It is possible, however, to monitor all the parameters wirelessly and to make a regulating intervention. The BionicANTs also come very close to their natural role model in terms of design and constructional layout. Even the mouth instrument used for gripping objects is replicated in very accurate detail. The pincer movement is provided by two piezo-ceramic bending transducers, which are built into the jaw as actuators. If a voltage is applied to the tiny plates, they deflect and pass on the direction of movement mechanically to the gripping jaws. All actions are based on a distributed set of rules, which have been worked out in advance using mathematical modelling and simulations and are stored on every ant. The control strategy provides for a multi-agent system in which the participants are not hierarchically ordered. Instead, all the BionicANTs contribute to the process of finding a solution together by means of distributed intelligence. The information exchange between the ants required for this takes place via the radio module located in the torso. The ants use the 3D stereo camera in their head to identify the gripping object as well as for self-localisation purposes. With its help, each ant is able to contextualise itself in its environment using landmarks. The opto-electrical sensor in the abdomen uses the floor structure to tell how the ant is moving in relation to the ground. With both systems combined, each ant knows its position – even if its sight is temporarily impaired.”

Here is a video of BionicANTs describing the technology and their operations:

With on-board batteries the ANT can work for 40 minutes.

eMotionButterflies

Designed to mimic real butterflies, this small robots are ultralight and have coordinated flying behaviour in a collective. They are are able to autonomously avoid crashing into each other in real-time controlled by networked external guidance and monitoring system with 10 cameras, interior GPS and IR markers on their bodies. The entire system is very impressive combination of prcise guidance, raw processing power, optical tracking and delicate 3D printed flying robot design.

Technical specifications of entire system:

  • 10 infrared cameras
  • Frame rate: 160 images per second
  • Exposure time: 250 µs
  • 1 central master computer
  • Analysed pixels: 3.7 billion pixels per second
  • Flying object:
  • Wingspan: 50 cm
  • Weight: 32 g
  • Wing beat frequency: approx. 1–2 Hz
  • Flying speed: 1–2.5 m/s
  • Flying time: 3–4 min.
  • Recharging time: 15 min.
  • Integrated components: 1 ATxmega32E5 microcontroller , 1 ATmega328 microcontroller, 2 servo motors made by MARK STAR Servo-tech Co., Ltd. to activate the wings, 1 inertial sensor (inertial measurement unit, IMU) MPU-9150 with gyroscope, accelerometer and compass, 2 radio modules, 2 LiPo cells 7.4 V 90 mAh, 2 infrared LEDs as active markers
eMotionButterflies flying in formation Source: Festo
eMotionButterflies flying in formation Source: Festo

Here is a video of graceful eMotionButterflies:

You can get more information about this wonderful looking 3D printed insectoids on Festo homepage:

http://www.festo.com/cms/en_corp/9617.htm

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Lav Radis
Entrepreneur and 3d printing enthusiast from Croatia. Blogging about 3d printing and digital manufacturing since 2011.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Designer Creates Modular Sneakers with 3D Printed Soles and Climbing Rope Laces

Daniyar Uderbekov, a designer based in Kazakhstan, has developed UDRB, a pair of modular sneakers designed to address environmental concerns in the footwear... read more »

Fashion

Nestlé Expands 3D Printing Operations for Manufacturing Parts Across UK Sites

Nestlé has implemented standardized 3D printing processes across its UK manufacturing facilities over the past year. The company uses a team of three... read more »

News
Nestlé Expands 3D Printing Operations for Manufacturing Parts Across UK Sites

Cornell Researchers Develop 3D Printing Method for Enhanced Superconductors

Cornell University researchers have developed a one-step 3D printing method that produces superconductors with improved properties. The research, published August 19 in Nature... read more »

News
Cornell Researchers Develop 3D Printing Method for Enhanced Superconductors

Scottish Maritime Project Shows Promise for 3D Printed Ship Components

A Scottish project using large-scale additive manufacturing for shipbuilding components has completed its second phase, demonstrating potential benefits for the maritime industry. The... read more »

News
Scottish Maritime Project Shows Promise for 3D Printed Ship Components

Navy Maintenance Center Uses 3D Printing to Replace Destroyer Pump Component at Fraction of Conventional Cost

The Southeast Regional Maintenance Center (SERMC) has successfully used 3D printing to manufacture a replacement cooling rotor for an Arleigh Burke-class guided missile... read more »

Military
Navy Maintenance Center Uses 3D Printing to Replace Destroyer Pump Component at Fraction of Conventional Cost

Rapid Fusion Launches AI Assistant for Large-Format 3D Printers

British manufacturer Rapid Fusion has introduced "Bob," an AI-powered assistant designed to optimize operations for its large-format 3D printing systems. The company developed... read more »

News
Rapid Fusion Launches AI Assistant for Large-Format 3D Printers

Creality Submits IPO Prospectus for Hong Kong Stock Exchange Listing

Shenzhen-based 3D printer manufacturer Creality has submitted a prospectus to the Hong Kong Stock Exchange for a main board listing. The company began... read more »

News
Creality Submits IPO Prospectus for Hong Kong Stock Exchange Listing

Graphjet Technology Partners with Malaysian University on 3D-Printed Heat Sink Development

Graphjet Technology has entered into a collaboration agreement with the Centre for Materials Engineering and Smart Manufacturing (MERCU) at Universiti Kebangsaan Malaysia (UKM).... read more »

News
Graphjet Technology Partners with Malaysian University on 3D-Printed Heat Sink Development

Humtown drives US Manufacturing Comeback with Additive Sand Casting

Humtown Products, an Ohio-based company, is positioning itself to serve manufacturers looking to bring production back to the United States. The company specializes... read more »

News
Humtown drives US Manufacturing Comeback with Additive Sand Casting

Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Oak Ridge National Laboratory has released a comprehensive dataset for its Peregrine software, which monitors and analyzes parts created through powder bed additive... read more »

News
Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing