3D Printing
News Videos Newsletter Contact us
Home / News / German Researchers to Laser Print Moondust
qidi

German Researchers to Laser Print Moondust

August 19, 2022

Researchers from German institutes are planning to send a robotic mobile selective laser melting (SLM) printer to the Moon, to demonstrate in-situ additive manufacturing using lunar regolith as a feedstock.

The project is carried out by engineers from the Hannover Laser Center (LZH) and the Berlin Technical University (TU Berlin), and the technology has already been demonstrated successfully on Earth, using simulated lunar conditions.

You can see a render of the robot in the image below.

moondust
Printing with moondust (Image credit: LZH)

Moonrise

The three-year long “Moonrise” project has received funding from the German Federal Ministry of Economics and Climate Action to the tune of 4.75 million euros ($4.82 million).

It is intended to pave the way for technologies for lunar construction by using in-situ resource utilization, in this case, the resource being the silicate regolith of the Moon’s surface.

Why utilize local materials? Because sending stuff to the Moon is really expensive.

“At a cost of up to a million dollars per kilogram, a complete transport of the material from Earth to the Moon would be extremely expensive,” said Jörg Neumann, MOONRISE project manager at LZH.

“Our regolith construction kit will be adapted to the landing site on the Moon, so that in the laboratory the laser and the AI can be aligned with the real lunar mission.”

As mentioned previously, the technique has been demonstrated on Earth by using a lunar regolith simulant, and by recreating the (lack of) atmosphere on the Moon as well as the reduced gravity.

This reduced gravity experiment was conducted at the Einstein-Elevator of the HiTEC (Hannover Institute of Technology) at Leibniz Universitat Hannover. The Einstein-Elevator is a drop tower, capable of exposing experiments to a so-called microgravity environment, during freefall.

You can see an example of the fused regolith simulant from one of the various experiments in the image below.

Fused regolith
Fused regolith. (Image credit: LZH)

AI

Once on the Moon the rover will utilize AI to accomplish its mission.

The laser will be supported by artificial intelligence (AI). A camera will take photos on the Moon, and send them back to Earth, where researchers will then analyze these photos with the help of an intelligent image processing system. The system will help analyze the lunar dust melted by the laser and provide the scientists on Earth with AI-based process and quality control.

The AI must be trained in advance for use on the Moon so a simulated lunar environment has been set up at a laboratory at TU Berlin.

These experiments involve collecting photographs of the simulated regolith under lighting conditions that mimic those on the Moon. This will allow a corresponding pool of images to be created with which the AI can be trained.

“A regolith construction kit has been developed over the past few years, which allows the various possible landing sites to be precisely recreated in terms of properties,” said Benedict Grefen from the institute of Aeronautics and Astronautics (RFT) at TU Berlin.

“This is then adapted in the project to the final landing site on the Moon, so that in the laboratory the laser and the AI can be aligned with the real lunar mission.”

The task now is to optimize the laser for spaceflight and to qualify the laser for launch. This will culminate in a flight model of the laser, and robotic carrier.

In a precursor project, funded by the Volkswagen Foundation, the research team developed a compact, robust laser and successfully tested it in the laboratory on the robotic arm of a lunar rover.

The Moonrise mission is scheduled to launch in 2024.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Fraunhofer, MacLean-Fogg, and Toyota Develop Large-Scale 3D Printing System for Automotive Die Casting Molds

The Fraunhofer Institute for Laser Technology ILT has partnered with powder manufacturer MacLean-Fogg and Toyota to develop a 3D printing solution for manufacturing... read more »

3D Printing Metal
Fraunhofer, MacLean-Fogg, and Toyota Develop Large-Scale 3D Printing System for Automotive Die Casting Molds

ASTM International Approves New Standard to Streamline AM Processes

ASTM International's additive manufacturing technologies committee (F42) has approved a new standard designed to help businesses navigate the procurement and delivery of 3D... read more »

News
ASTM International Approves New Standard to Streamline AM Processes

Trek Launches 3D Printed AirLoom Saddle Line

Trek has introduced its first 3D-printed saddle series, the Aeolus AirLoom, featuring what the company calls AirLoom lattice technology. The new design updates... read more »

News
Trek Launches 3D Printed AirLoom Saddle Line

QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

QuesTek Innovations has partnered with a global niobium producer to develop a high-temperature alloy designed for additive manufacturing. The project targets aerospace and... read more »

3D Printing Metal
QuesTek Partners with Niobium Producer to Develop High-Temperature 3D Printing Alloy

Autodesk Research and Additive Tectonics Develop 3D Printed Floor System with Alternative Materials

Autodesk Research has partnered with Additive Tectonics to develop a new approach to concrete floor construction using 3D printing technology. The collaboration combines... read more »

Construction

NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

The National Renewable Energy Laboratory (NREL) has installed a new laser-powered metal 3D printer at its Flatirons Campus to support marine energy device... read more »

3D Printing Metal
NREL Acquires Large-Scale Metal 3D Printer to Advance Marine Energy Research

Apple Adopts 3D Printing for Titanium USB-C Ports in New iPhone Air

Apple’s latest smartphone release marks a quiet but notable step in consumer electronics manufacturing: the company has confirmed that its new iPhone Air... read more »

3D Printing Metal
Apple Iphone 17 air

GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

GKN Aerospace announced the expansion of its Newington, Connecticut facility to include a new production line for additively manufactured Fan Case Mount Ring... read more »

Aerospace
GKN Aerospace Expands Connecticut Facility for 3D Printed Engine Components

UltiMaker Launches Secure 3D Printing Line for Defense Applications

UltiMaker has introduced its Secure Line of 3D printing products specifically designed for defense and high-security environments. The initial lineup includes the UltiMaker... read more »

News
UltiMaker Launches Secure 3D Printing Line for Defense Applications

Digital Manufacturing Centre Delivers 90kg 3D Printed Military Vehicle Component

The Digital Manufacturing Centre (DMC) has completed production of its largest additive manufacturing metal component to date - a 90kg suspension and differential... read more »

3D Printing Metal
Digital Manufacturing Centre Delivers 90kg 3D Printed Military Vehicle Component

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing