3D Printing
News Videos Newsletter Contact us
Home / News / Graphene Seaweed Composite Forms Prints Stronger Than Steel
qidi

Graphene Seaweed Composite Forms Prints Stronger Than Steel

November 22, 2018

Due to its intrinsic properties, scientists all over the world are racing to derive new types of objects from graphene. Creating graphene is a complex, expensive process and only ever results in small volumes. Still, combinations with other substances provide researchers with many avenues for materials with unique properties. Case in point: Brown University’s new graphene seaweed composite, which forms a smart material stronger than steel.

Researchers 3D Print Complex Graphene Structures
Related Story
Researchers 3D Print Complex Graphene Structures

The research paper is actually about fixing the issue of fragility in hydrogels by adding sheets of graphene oxide. As a result of these experiments, researchers found that the addition of GO nanosheets can make any material capable of becoming stiffer or softer in response to different chemical treatments, allowing the substances to react to their surroundings in real-time. The material researchers derived from seaweed is called alginate. It forms a mixture that repels oils and, once it undergoes stereolithography, it becomes harder than steel.

“One limiting factor in the use of alginate hydrogels is that they’re very fragile — they tend to fall apart under mechanical load or in low salt solutions,” said Thomas Valentin, a Ph.D. student at Brown’s School of Engineering. “What we showed is [that] by including graphene oxide nanosheets, we can make these structures much more robust.”

Alginate-Graphene Oxide Printing

The additional stiffness enabled the researchers to print structures that had significant overhangs. An alginate mixture alone would have made this difficult due to its fragility. Additionally, despite the increased stiffness, the alginate-GO retained its ability to react to external stimuli much like alginate can on its own. The researchers demonstrated that, when bathing the materials in chemicals that remove its ions, the mixture swells up and becomes much softer.

The materials regain stiffness upon restoring their ions through exposure to ionic salts. Experiments showed that the materials’ stiffness could be tuned over a factor of 500 by varying their external ionic environment. This gives it a sort of 4D printing aspect as well, as it can react to various stimuli and thus take on new purposes by altering its stiffness.

Previously, a team of scientists created another graphene and seaweed derivable mixture for water filtering processes. This project put the ionic capabilities of a similar seaweed-based alginate, iron and GO compound to tremendous use. The resilience of the material and its ability to block out oils and metals make it ideal for ocean-clean up. The graphene seaweed composite has a ton of other potential applications considering all of its traits like conductivity and stiffness. We can’t wait to see what new applications researchers discover next.

Featured image courtesy of Brown University.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Central Saint Martins Graduate Creates 3D Printed Tennis Balls

Central Saint Martins graduate Noé Chouraqui has developed Point, a 3D-printed tennis ball made from bio-based, recyclable filament. The balls maintain the traditional... read more »

News
Central Saint Martins Graduate Creates 3D Printed Tennis Balls

ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

Researchers at ETH Zurich and the University Hospital of Zurich have developed a new type of cardiac patch designed to both seal and... read more »

Medical
ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

The Royal Air Force has installed its first internally manufactured 3D printed component on an operational Typhoon fighter jet at RAF Coningsby this... read more »

Aerospace
RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

Researchers from the University of California, Irvine and Japan's Okayama and Toho universities have published findings about how chitons develop their exceptionally hard... read more »

Materials
Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

3D Printed Modular Bridge Displayed at Venice Exhibition Features Demountable Design

A 3D-printed concrete bridge called Diamanti has been unveiled at the Time, Space, Existence exhibition in Venice as part of a research collaboration... read more »

Construction
3D Printed Modular Bridge Displayed at Venice Exhibition Features Demountable Design

Caltech Researchers Develop 3D Printing Method for Custom Metal Alloys

Scientists at Caltech have created a new technique that allows precise control over the composition and structure of metal alloys through 3D printing.... read more »

3D Printing Metal
Caltech Researchers Develop 3D Printing Method for Custom Metal Alloys

University of Maine Researchers Develop Method to Predict Strength of 3D-Printed Lightweight Components

Engineers at the University of Maine's Advanced Structures and Composites Center have developed a new method to predict the strength of lightweight 3D-printed... read more »

News
University of Maine Researchers Develop Method to Predict Strength of 3D-Printed Lightweight Components

Chinese Design Firm Uses 3D Concrete Printing for Community Playground in Shandong Province

XISUI Design has completed Boulder Park, a 13,000-square-meter community playground in Ji'nan, Shandong Province, China, that incorporates 3D concrete printing technology. The park... read more »

Construction

RMIT Develops Lower-Cost Titanium Alloy for 3D Printing Applications

Researchers at RMIT University have developed a new titanium alloy that costs 29% less to produce than standard titanium used in 3D printing.... read more »

3D Printing Metal
RMIT Develops Lower-Cost Titanium Alloy for 3D Printing Applications

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing