3D Printing
News Videos Newsletter Contact us
Home / News / Harvard Researchers Showcase Rotational 3D Printing For High-Performance Composites
revopoint

Harvard Researchers Showcase Rotational 3D Printing For High-Performance Composites

January 18, 2018

Rarely a month goes by without some great engineering news from Harvard. This time around, it’s a breakthrough from the John A. Paulson School of Engineering and Applied Sciences. Researchers are looking to a new form of nozzle that rotates as it extrudes as a means of arranging short fibres into much stronger structures for objects. They have named the method rotational 3D printing.

Essentially the team devised a means of programming fiber orientation with epoxy composites with locational accuracy. This then allowed them to create structures with superior stiffness, strength and durability. The unique way the nozzle moves is key to this finding.

Related Story
Swiss University Students Develop 6-Axis 3D Printer

“Rotational 3D printing can be used to achieve optimal, or near optimal, fiber arrangements at every location in the printed part, resulting in higher strength and stiffness with less material,” according to Brett Compton, co-author of the study detailing the technique. “Rather than using magnetic or electric fields to orient fibers, we control the flow of the viscous ink itself to impart the desired fiber orientation.”

The rotation of the nozzle layers the objects in such a way that it mimics the hierarchical patterns seen in nature. It also allows new arrangements that can adjust the level of stress tolerance and different points in a print.

Potential Implications of the Discovery

Harvard Rotational 3D Printing

Aside from stronger and durable structures, there are other benefits to this style of printing. As mentioned earlier, it allows for more control over how strength and durability are spread across objects. This would in turn allow for the creation of objects with precisely controlled strength and stress points.

It can also be a potential aid in the creation of biological composites. After all, control of fiber orientation at small scales and the local level has been an obstacle to printing these composites. The method apparently also reduces material wastage.

Even though they tested it with a very specific arrangement, the team are confident that their method can be applicable to any material extrusion-based printing method, from FFF, to direct ink writing, to large-scale thermoplastic additive manufacturing, and can process any filler material, from carbon and glass fibers to metallic or ceramic whiskers and platelets.

The research is fairly new but holds promise. In given time, the idea might just become a household concept. It has potential uses everywhere, especially in the manufacturing of load-bearing objects.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

United Utilities Expands 3D Printing for Water Infrastructure Operations

United Utilities is incorporating 3D printing technology into its operations following the completion of a two-year Water Industry Printfrastructure project. The initiative, funded... read more »

News
United Utilities Expands 3D Printing for Water Infrastructure Operations

New Frontier Aerospace Successfully Tests 3D-Printed Rocket Engine

New Frontier Aerospace has completed a series of hot-fire tests of its 3D-printed Mjölnir rocket engine, the company announced from its Kent, Washington... read more »

Aerospace
New Frontier Aerospace Successfully Tests 3D-Printed Rocket Engine

FRCE Innovation Lab Creates Rapid Solution for F-35 Fleet

Fleet Readiness Center East (FRCE) has produced 2,000 O-ring installation tools for F-35 Lightning II aircraft using 3D printing technology. The project was... read more »

Military
FRCE Innovation Lab Creates Rapid Solution for F-35 Fleet

Etsy’s New 3D Printing Restrictions: What Sellers Need to Know

Etsy has recently updated its policy regarding items in the "Made by a Seller" category, specifically clarifying rules for products created with "computerized... read more »

News

New 3D-Printing Technique Creates Dual-Material Objects from Single Resin

Researchers have developed a new Vat photopolymerization technique that creates both permanent objects and dissolvable supports in a single process. According to a... read more »

Materials
New 3D-Printing Technique Creates Dual-Material Objects from Single Resin

Northumbria Receives EU Funding for Sustainable 3D-Printed Construction Research

Northumbria University has received a Marie Skłodowska-Curie Actions (MSCA) Fellowship worth over a quarter million euros to research low-carbon, 3D-printed construction materials. The... read more »

Construction
Northumbria Receives EU Funding for Sustainable 3D-Printed Construction Research

3D-Printed Sports Bra Could Help Olympic Star Break Historic Athletics Record

Nike has developed a new 3D-printed sports bra called the FlyWeb Bra for runner Faith Kipyegon's attempt to break the 4-minute mile barrier.... read more »

News
3D-Printed Sports Bra Could Help Olympic Star Break Historic Athletics Record

Vietnam Emerges in High-Tech Medicine as Vinmec Pioneers 3D-Printed Breakthroughs

Across pediatric, adult, and geriatric cases, Vietnam’s Vinmec Healthcare System's implementation of 3D printing solutions has significantly transformed patient outcomes, replacing disability with... read more »

Medical
Vietnam Emerges in High-Tech Medicine as Vinmec Pioneers 3D-Printed Breakthroughs

Johns Hopkins APL Helps Navy Overcome Metal 3D Printing Reliability Concerns

Researchers at the Johns Hopkins Applied Physics Laboratory (APL) are working with the Naval Sea Systems Command (NAVSEA) to address reliability concerns with... read more »

3D Printing Metal
Johns Hopkins APL Helps Navy Overcome Metal 3D Printing Reliability Concerns

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing