3D Printing
News Videos Newsletter Contact us
Home / News / Hybrid LPBF Used to Make Smooth Quarter Wave Resonators
qidi

Hybrid LPBF Used to Make Smooth Quarter Wave Resonators

December 16, 2022

Printing metals with LPBF methods leaves a rough finish, which requires costly post processing. Sure, you can throw the part onto a CNC mill, and smooth everything on the exterior surfaces, but it’s time consuming, and what about the interior surfaces and other faces inaccessible to the cutting tool?

Researchers from University of Nebraska-Lincoln and Virginia Tech have found a solution with a hybrid additive/subtractive approach (h-PBLF), and they have demonstrated the results by printing a bunch of quarter wave resonators (QWR) to show it.

Read on for more information.

Hybrid Approach

CNC post processing of metal printed parts is no problem really. But when smoothing parts beyond the reach of a CNC toolhead, the tool just can’t get in there. You can see the internal geometry of the QWRs below.

X-Ray
<br /> X-Ray CT images of LPBF versus h-LPBF made QWRs. (Image credit: University of Nebraska-Lincoln)

There have been alternative methods (superfinishing), normally using means such as magnetic rheological finishing, chemical machining or abrasive flow finishing but these processes have a slow material removal rate, and the results are often not as predictable as when using a CNC.

The approach from the researchers relies on printing just a few layers at a time, and then machining only the sides with a ball end mill on a 3-axis CNC vertical milling machine, rather than machining the tops of the printed layers.

They effectively print, then smooth the side walls of that printed section, in sections of around 10 layers (totalling 5 mm in height). This means they can smooth features beneath overhangs etc before printing the overhang (or other obstructing feature) is actually formed. Smart!

The diagram below highlights the approach, which combines the LPBF system and 3-axis CNC vertical milling machine in one unit, for in-situ hybrid manufacturing.

diagram
<br /> Experiment apparatus diagram. (Image credit: University of Nebraska-Lincoln)

This experiment was the first time that this hybrid approach has been used to manufacture a quarter wave resonator using a hybrid additive-subtractive laser powder bed fusion approach.

A quarter wave resonator (QWR) is a passive radio frequency component with fairly complex internal geometry. By using the hybrid approach, they were able to obtain surface finishes of Ra~2 μm compared to around Ra~8 to 20 μm for the conventional LPBF method on its own.

You can see the difference with your very own eyes in the image below.

Comparison
<br /> Comparison of surface finishes. (Image credit: University of Nebraska-Lincoln)

The CNC section had an automatic tool changer capable of holding 40 different cutting tools. A ball end mill of 2mm diameter was used with a spindle speed of almost 30,000 RPM, and a feed rate of 1500 mm per minute. The material was removed in multiple passes during the milling stage, including roughing, semi-finishing, and finishing passes.

Matching the Powder Size

These parameters were deliberately selected, as they resulted in around 50 μm of material removed per revolution of the cutting tool. This means that the chips were approximately the same size as the powder feedstock, and therefore there were no issues with depositing the subsequent printed layers after the smoothing had been completed on that section.

The high speed and low chip load of the machining stage ensured a surface roughness in the micrometer range and allowed the processing of delicate features.

build plate
<br /> The build plate with 6x little QWRs. (Image credit: University of Nebraska-Lincoln)

The improvement in surface finish resulted in reduced RF losses by a factor of almost 2. Consequently, the RF performance (Q-factor) of the hybrid manufactured QWR components were 1.5 to 2 times superior compared to parts made with the usual LPBF method.

You can read more about the research in the paper titled “Application of hybrid laser powder bed fusion additive manufacturing to microwave radio frequency quarter wave cavity resonators” at this link.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Oak Ridge National Laboratory has released a comprehensive dataset for its Peregrine software, which monitors and analyzes parts created through powder bed additive... read more »

News
Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Creality Expands Flagship Lineup with K2 and K2 Pro 3D Printers

Creality has announced the launch of the K2 and K2 Pro, two new additions to its high-end K series. Built on a rigid... read more »

3D Printers
Creality Expands Flagship Lineup with K2 and K2 Pro 3D Printers

Farsoon and Stark Future Complete KLINGA Project, Producing Over 1,000 Titanium Parts

Farsoon Europe GmbH and Stark Future have completed the KLINGA Project, a collaborative engineering initiative that produced more than 1,000 titanium parts using... read more »

3D Printing Metal
Farsoon and Stark Future Complete KLINGA Project, Producing Over 1,000 Titanium Parts

Swiss Steel Group’s Ugitech Introduces Custom Wire for 3D Metal Printing

Swiss Steel Group and its French subsidiary Ugitech have launched UGIWAM wire, a new product designed for wire arc additive manufacturing (WAAM). The... read more »

3D Printing Metal
Swiss Steel Group's Ugitech Introduces Custom Wire for 3D Metal Printing

QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

QIDI Tech has introduced the QIDI Q2, a compact, beginner-friendly desktop 3D printer engineered to bring professional-grade capabilities into the home. Designed as... read more »

3D Printers
QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

Purdue University's Composites Manufacturing and Simulation Center has partnered with Thermwood to combine predictive simulation technology with large-scale 3D printing for composite parts... read more »

News
Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Daniel Rau, an assistant professor of mechanical engineering at the University of Wyoming, has received a $198,932 grant from the National Science Foundation... read more »

Materials
University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Researchers led by Mejia et al. have developed a real-time monitoring and control system for direct ink write (DIW) 3D printing of thermosetting... read more »

Materials
Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Central Saint Martins Graduate Creates 3D Printed Tennis Balls

Central Saint Martins graduate Noé Chouraqui has developed Point, a 3D-printed tennis ball made from bio-based, recyclable filament. The balls maintain the traditional... read more »

News
Central Saint Martins Graduate Creates 3D Printed Tennis Balls

ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

Researchers at ETH Zurich and the University Hospital of Zurich have developed a new type of cardiac patch designed to both seal and... read more »

Medical
ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing