3D Printing
News Videos Newsletter Contact us
Home / News / Integrating HIP with 3D Printing for Superior Part Performance
qidi

Integrating HIP with 3D Printing for Superior Part Performance

August 30, 2024

Hot Isostatic Pressing (HIP) has long been a valuable process in industries requiring high precision and material reliability, such as medical implants, aerospace, nuclear, and military sectors. As additive manufacturing (AM) continues to gain traction in these demanding fields, the integration of HIP technology is proving to be a powerful ally in enhancing the performance and reliability of 3D printed parts.

Quintus Technologies: Pioneering HIP for Additive Manufacturing

Quintus Technologies, a Swedish company known for its innovations in high-pressure technology, has been at the forefront of integrating HIP into the additive manufacturing process. The company, which rebranded as Quintus around a decade ago, initially gained recognition for developing a heat and pressure process for producing synthetic diamonds. In 2015, Quintus began focusing on how its technology could bring significant advantages to the emerging field of AM.

“We started to discuss with our customers what our technology could offer them in terms of value,” explained Henning, a representative from Quintus. As demand for AM grew, Quintus responded by developing high-pressure heat treatment technology tailored for industrial AM users. This technology combines the benefits of high-speed cooling with temperature uniformity, effectively allowing manufacturers to transition from printed products to fully functional, real-life applications.

Enhancing AM Parts with HIP

HIP technology addresses some of the unique challenges presented by metal AM parts, such as stresses, porosity, and cracking. These issues are critical to improving the mechanical properties of printed parts, including ductility, fracture toughness, elongation, and fatigue life. “HIPing is a known technology to many in the industry and it is applied very late in the process,” Henning noted. However, the specific microstructures of metal AM parts require different treatment considerations to maximize their performance.

Hiperbaric 20 HIP press
Super-Sized Quintus Hot Isostatic Press. (Image Credit: Quintus Technologies)

Quintus’ HIP technology has become particularly relevant in high-performance applications within the aerospace, medical, and space industries. As the demand for larger and more complex AM parts grows, the capability of AM-ready HIP equipment must keep pace. Quintus continues to expand its technology to accommodate these increasing demands, all while maintaining the same high-performance standards.

Henning emphasized the importance of using AM’s flexibility rather than simply replacing cast or forged parts with printed ones. “Everyone is trying to replace one part by making it a new way, but the real benefit is when you use the flexibility of AM,” he stated. This approach ensures that manufacturers can fully exploit the advantages of AM in combination with HIP technology, achieving optimal results.

Hiperbaric: Leveraging HIP for New AM Applications

Hiperbaric, another leader in high-pressure technology, has also recognized the synergy between AM and HIP. The company’s HIP technology is already being used by industries like aerospace to certify materials and parts with the highest quality and safety standards. For example, Hiperbaric’s HIP technology has become a decisive tool for Aenium Engineering in the space sector, where it ensures that printed components meet strict performance criteria.

Integrating HIP with 3D Printing for Superior Part Performance
Hiperbaric 20 HIP press (Image Credit: Hiperbaric)

Despite its advantages, HIP does have some limitations, particularly with parts that feature sandwich structures or advanced ceramics. These materials can present challenges during the HIP process due to their complex internal structures or the extreme conditions required for processing.

However, Hiperbaric sees “enormous potential” for HIP in new AM applications and materials. The company is currently working on R&D projects to enhance the properties of materials like silicon carbide (SiC) through HIP, which eliminates defects in polycrystalline SiC wafers. As AM adoption progresses, HIP is expected to play a critical role in reducing costs and improving the performance of components in industries ranging from space exploration to solid-state batteries.

Source: tctmagazine.com

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

3D-Printed Insects Help Scientists Map the Limits of Mimicry in Nature

Researchers at the University of Nottingham have developed a method to 3D print life-sized, color-accurate insect models for biological research. The team, led... read more »

Environmental

University of Hong Kong Scientists Explore Growing Organs with 3D Printing Technology

Researchers at the University of Hong Kong (HKU) are working to combine 3D-printed respiratory tissue with lab-grown organoids to create functional airways for... read more »

Bioprinting
University of Hong Kong Scientists Explore Growing Organs with 3D Printing Technology

SHINING 3D Unveils EinScan Rigil with Tri-Mode Scanning for Pro-Level Flexibility

SHINING 3D has launched its newest flagship 3D scanner, the EinScan Rigil — touted as the world’s first 3D scanner featuring Tri-Mode operation... read more »

News
SHINING 3D Unveils EinScan Rigil with Tri-Mode Scanning for Pro-Level Flexibility

ETH Zurich 3D Prints Recycled Plastic Structure for Swiss Ice Cream Shop

ETH Zurich students have completed a 3D-printed ice cream shop in the Swiss Alpine village of Mulegns. The project, called Gelateria, was designed... read more »

Construction
ETH Zurich 3D Prints Recycled Plastic Structure for Swiss Ice Cream Shop

Hugo Launches 3D Printed Loafers with Zellerfeld

Hugo, the younger brand under Hugo Boss, has partnered with 3D printing company Zellerfeld to create a fully 3D-printed loafer. The shoe is... read more »

Fashion
Hugo Launches 3D Printed Loafers with Zellerfeld

3D Printed Resin Combines Rubber Flexibility with Plastic Strength, Surprising Scientists

Researchers at the University of Texas at Austin have developed a 3D printing method that can create objects with both soft and hard... read more »

News
3D Printed Resin Combines Rubber Flexibility with Plastic Strength, Surprising Scientists

LPE Supports Queen’s Propulsion Laboratory with 3D Printed Rocket Engine Chamber

Students at Queen's University Belfast have developed what they describe as Ireland's first student-built liquid rocket engine. The Kelvin Mk.1, named after Belfast-born... read more »

3D Printing Metal
LPE Supports Queen’s Propulsion Laboratory with 3D Printed Rocket Engine Chamber

Dassault Systèmes and Patrick Jouin Unveil New 3D Printed Chair

Dassault Systèmes and French designer Patrick Jouin have unveiled Ta.Tamu, a 3D-printed chair developed using the company's 3DEXPERIENCE platform. The project represents a... read more »

News
Dassault Systèmes and Patrick Jouin Unveil New 3D Printed Chair

Endemic Architecture Debuts 3D Printed Homes in Rural California

A development of five 3D-printed homes called Corduroy Castles is currently under construction in Olivehurst, California, a rural town in Yuba County located... read more »

Construction
Endemic Architecture Debuts 3D Printed Homes in Rural California

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing