3D Printing
News Videos Newsletter Contact us
Home / News / MIT 3D Printed Magnets Mimic Real Organisms
qidi

MIT 3D Printed Magnets Mimic Real Organisms

June 18, 2018

Recent findings from the group of researchers at Massachusetts Institute of Technology show magnetic, 3D printed creatures able to move, crawl, sneak, fold and catching objects, with no “strings” attached. MIT produced the magnets from a brand new kind of soft material, which they infused with magnetic particles. These incredibly realistic structures have potential in intelligent robot development, especially within medicine.

The field of soppy robotics is giving scientists the chance to produce more flexible, and for that reason handier, machines. Soft robots, like Harvard University’s well-known Octobot, move using mechanisms that more carefully resemble living organisms. This delicate set of motions is the result of very precise engineering on a micro-level.

3d-printed-silicone-hd-featured-600
Related Story
An Overview Of Silicone 3D Printing

In most robots, hydraulic or pneumatic power replicates “living” mechanisms like muscles. However, to create movements that are more intelligent, and adaptable, they should be less reliant on input from the human operator. 4D printing, i.e. 3D printing materials that autonomously transform, is also finding new methods for “hands free” activation. However, at the moment, the procedures are too lengthy, and also not as easily reversible.

Producing Moving Magnetic “Organisms”

MIT’s magnetic objects are 3D printed on a specially made platform, from recently-formulated ink infused with magnetic particles.

The manufacturing platform hosts a 3D printer nozzle in the heart of an electromagnet, which arranges the orientation of particles within the ink. With magnetic particle control, coupled with a flexible material, they can manipulate shapes by using the field. Xuanhe Zhao, the study’s lead author believes that objects coded in this latest research may find promising application in the area of biomedicine, similar to other micro robots. He believes that potential uses include putting structures to control the pumping of blood.

Mesh Robots Float & Grab Objects On Command
Related Story
Mesh Robots Float & Grab Objects On Command

“For example,” Zhao explains, “we could put a structure around a blood vessel to control the pumping of blood, or use a magnet to guide a device through the GI tract to take images […]”. While the research is still fresh, the potential applications are definitely worth looking into.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Rapid Fusion Launches AI Assistant for Large-Format 3D Printers

British manufacturer Rapid Fusion has introduced "Bob," an AI-powered assistant designed to optimize operations for its large-format 3D printing systems. The company developed... read more »

News
Rapid Fusion Launches AI Assistant for Large-Format 3D Printers

Creality Submits IPO Prospectus for Hong Kong Stock Exchange Listing

Shenzhen-based 3D printer manufacturer Creality has submitted a prospectus to the Hong Kong Stock Exchange for a main board listing. The company began... read more »

News
Creality Submits IPO Prospectus for Hong Kong Stock Exchange Listing

Graphjet Technology Partners with Malaysian University on 3D-Printed Heat Sink Development

Graphjet Technology has entered into a collaboration agreement with the Centre for Materials Engineering and Smart Manufacturing (MERCU) at Universiti Kebangsaan Malaysia (UKM).... read more »

News
Graphjet Technology Partners with Malaysian University on 3D-Printed Heat Sink Development

Humtown drives US Manufacturing Comeback with Additive Sand Casting

Humtown Products, an Ohio-based company, is positioning itself to serve manufacturers looking to bring production back to the United States. The company specializes... read more »

News
Humtown drives US Manufacturing Comeback with Additive Sand Casting

Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Oak Ridge National Laboratory has released a comprehensive dataset for its Peregrine software, which monitors and analyzes parts created through powder bed additive... read more »

News
Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Creality Expands Flagship Lineup with K2 and K2 Pro 3D Printers

Creality has announced the launch of the K2 and K2 Pro, two new additions to its high-end K series. Built on a rigid... read more »

3D Printers
Creality Expands Flagship Lineup with K2 and K2 Pro 3D Printers

Farsoon and Stark Future Complete KLINGA Project, Producing Over 1,000 Titanium Parts

Farsoon Europe GmbH and Stark Future have completed the KLINGA Project, a collaborative engineering initiative that produced more than 1,000 titanium parts using... read more »

3D Printing Metal
Farsoon and Stark Future Complete KLINGA Project, Producing Over 1,000 Titanium Parts

Swiss Steel Group’s Ugitech Introduces Custom Wire for 3D Metal Printing

Swiss Steel Group and its French subsidiary Ugitech have launched UGIWAM wire, a new product designed for wire arc additive manufacturing (WAAM). The... read more »

3D Printing Metal
Swiss Steel Group's Ugitech Introduces Custom Wire for 3D Metal Printing

QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

QIDI Tech has introduced the QIDI Q2, a compact, beginner-friendly desktop 3D printer engineered to bring professional-grade capabilities into the home. Designed as... read more »

3D Printers
QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

Purdue University's Composites Manufacturing and Simulation Center has partnered with Thermwood to combine predictive simulation technology with large-scale 3D printing for composite parts... read more »

News
Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing