3D Printing
News Videos Newsletter Contact us
Home / News / NASA Validates 3D Printed RDRE Aerospike Engine
revopoint

NASA Validates 3D Printed RDRE Aerospike Engine

January 27, 2023

NASA has recently validated the data from hot fire tests on their 3D printed aerospike engine at their test facility in Marshall Space Flight Center, Huntsville, Alabama. The validation confirms that the engine is viable, and behaved as predicted, and as a result, NASA engineers have been given the green light to develop a larger version.

And not only is it an aerospike engine, but it is also a rotating detonation rocket engine (RDRE).

Why is this so great? Read on to find out.

Aerospike

In a traditional bell-shaped rocket nozzle the rocket exhaust over-expands as the ambient pressure drops while the rocket’s altitude increases. Basically, instead of shooting straight out of the rocket and pushing the rocket upwards, the over-expanded gasses kinda just flop around all over the place. This is inefficient.

In contrast, an aerospike engine fires the exhaust along the outside edge of a wedge-shaped protrusion called the “spike.” The spike forms one side of a “virtual” bell, with the other side being formed by the outside air. At low altitude, ambient pressure compresses the exhaust against the spike, creating a balance of pressure that gives no overall thrust but also doesn’t lose thrust by forming a partial vacuum. As the vehicle climbs to higher altitudes, the air pressure holding the exhaust against the spike decreases, and the recirculation zone at the base of the spike maintains a higher pressure, giving extra thrust as altitude increases.

This is more efficient.

But they do get very hot, and cooling them incurs a huge mass penalty. But thanks to 3D printing, lighter weight aerospike can be manufactured, allowing the fabrication of functional, lighter weight aerospike engines. And that’s what NASA has been working on here, as you can see in the image below.

RDRE aerospike
RDRE aerospike. (Image credit: NASA)

The RDRE aerospike engine was printed with an LPBF process, using GRCop-42, a copper alloy developed by NASA, which is valued for its thermal properties.

The engine was fired over a dozen times in 2022 at Marshall’s East Test Area, totaling nearly 10 minutes in duration.

RDRE

Normal rockets use a single continuous burn to generate thrust, much like a huge firework.

A RDRE differs because it uses a series of small controlled explosions, or detonations, to generate thrust. Fuel and an oxidizer are injected into the combustion chamber, where they ignite and create a wave-like pattern of detonations that travel around the circumference of the chamber. This creates a continuous thrust, propelling the rocket forward.

The detonation process converts more of the fuel’s energy into thrust, and it can operate with a wider range of fuels and oxidizers. Plus, it can handle higher combustion pressures and temperatures than traditional rocket engines.

They not only use their fuels more efficiently, but they also have a higher thrust-to-weight ratio, and so they are of great interest to space engineers.

“Additive manufacturing certainly allows for very complex designs, but this novelty propagates and enables other new technologies such as advanced propulsion,” said Paul Gradl, Principal Engineer at NASA.

“Our NASA team completed hot-fire testing of an aerospike rotating detonation rocket engine (RDRE) enabled by Laser Powder Bed Fusion GRCop-42. The longest continuous duration operated with this hardware was greater than 130 seconds at 622 psi and accumulated over 10 minutes of total time. This is a huge step forward for RDRE.”

The RDRE tests were successful in proving their ability to operate for long durations while withstanding the extreme heat and pressure environments generated by detonations. The tests also demonstrated deep throttling and internal ignition bringing the technology closer to being used with future flight vehicles.

As a result of the test validations, a 10,000-pound class RDRE will be developed to compare the benefits against traditional liquid-fuelled rockets.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Thought3D Launches Magigoo Glide Kit and Supergrip to Improve 3D Print Adhesion

Thought3D just introduced two new products designed to meet evolving needs in additive manufacturing. The Magigoo Glide Kit and Magigoo Supergrip respond to... read more »

News
Thought3D Launches Magigoo Glide Kit and Supergrip to Improve 3D Print Adhesion

3D Printed Electric Motorcycle by DAB Motors Inspired by Akira’s Iconic Bike

DAB Motors and Vita Veloce Team (VVT) have unveiled a custom electric motorcycle featuring 3D printed bodywork inspired by the iconic bike from... read more »

Automotive

3DEImention Launches Automated Depowdering and Part Extraction System for High-Volume 3D Printing

Three years ago, a client turned to Avner Dei, 3DEImention CEO, seeking a metal printer capable of 5,000 parts per month. While the... read more »

News
3DEImention Launches Automated Depowdering and Part Extraction System for High-Volume 3D Printing

Revopoint Trackit Launches on Kickstarter with Marker-Free 3D Scanning

3D models play a critical role across industries—from virtual reality to advanced manufacturing—but high costs, complex setup, and lengthy workflows often limit access... read more »

News
Revopoint Trackit Launches on Kickstarter with Marker-Free 3D Scanning

High School Student Develops Low-Cost 3D Printed Drone

Cooper Taylor, a 17-year-old student, has created a cost-effective vertical take-off and landing (VTOL) drone using 3D-printed components. Taylor's design addresses efficiency concerns... read more »

Aerospace
High School Student Develops Low-Cost 3D Printed Drone

3D Printed Flower-Shaped Amphitheater Blooms on Venice’s San Servolo Island

Mario Cucinella Architects (MCA) has unveiled a 3D printed amphitheater titled "A Flower in San Servolo" on Venice's San Servolo Island. The open-air... read more »

Construction
3D Printed Flower-Shaped Amphitheater Blooms on Venice's San Servolo Island

Lyten Unveils Motorsports Initiative for 3D Graphene Supermaterials in Racing

Lyten has announced the launch of Lyten Motorsports in partnership with INDYCAR Experience. The new venture aims to apply Lyten's 3D Graphene technology... read more »

Automotive
Lyten Unveils Motorsports Initiative for 3D Graphene Supermaterials in Racing

Peak Technology Acquires Jinxbot to Enhance Additive Manufacturing for Deep Tech OEMs

Peak Technology has acquired Jinxbot 3D Printing, expanding its additive manufacturing capabilities. The acquisition adds Jinxbot's high-mix, rapid-turn prototyping services to Peak's existing... read more »

News
Peak Technology Acquires Jinxbot to Enhance Additive Manufacturing for Deep Tech OEMs

Canadian Navy Extends Submarine Lifespan with 3D Printed Parts

Dalhousie University has partnered with Defence Research and Development Canada (DRDC) to address critical parts supply challenges for Canada's aging submarine fleet. The... read more »

Military

Hands-On Review: Revopoint MetroX 3D Scanner

Revopoint has recently released their professional 3D scanner, the “ Revopoint MetroX 3D Scanner”. We have spent a couple of months putting the... read more »

News
Hands-On Review: Revopoint MetroX 3D Scanner

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing