3D Printing
News Videos Newsletter Contact us
Home / News / NASA Validates 3D Printed RDRE Aerospike Engine
revopoint

NASA Validates 3D Printed RDRE Aerospike Engine

January 27, 2023

NASA has recently validated the data from hot fire tests on their 3D printed aerospike engine at their test facility in Marshall Space Flight Center, Huntsville, Alabama. The validation confirms that the engine is viable, and behaved as predicted, and as a result, NASA engineers have been given the green light to develop a larger version.

And not only is it an aerospike engine, but it is also a rotating detonation rocket engine (RDRE).

Why is this so great? Read on to find out.

Aerospike

In a traditional bell-shaped rocket nozzle the rocket exhaust over-expands as the ambient pressure drops while the rocket’s altitude increases. Basically, instead of shooting straight out of the rocket and pushing the rocket upwards, the over-expanded gasses kinda just flop around all over the place. This is inefficient.

In contrast, an aerospike engine fires the exhaust along the outside edge of a wedge-shaped protrusion called the “spike.” The spike forms one side of a “virtual” bell, with the other side being formed by the outside air. At low altitude, ambient pressure compresses the exhaust against the spike, creating a balance of pressure that gives no overall thrust but also doesn’t lose thrust by forming a partial vacuum. As the vehicle climbs to higher altitudes, the air pressure holding the exhaust against the spike decreases, and the recirculation zone at the base of the spike maintains a higher pressure, giving extra thrust as altitude increases.

This is more efficient.

But they do get very hot, and cooling them incurs a huge mass penalty. But thanks to 3D printing, lighter weight aerospike can be manufactured, allowing the fabrication of functional, lighter weight aerospike engines. And that’s what NASA has been working on here, as you can see in the image below.

RDRE aerospike
RDRE aerospike. (Image credit: NASA)

The RDRE aerospike engine was printed with an LPBF process, using GRCop-42, a copper alloy developed by NASA, which is valued for its thermal properties.

The engine was fired over a dozen times in 2022 at Marshall’s East Test Area, totaling nearly 10 minutes in duration.

RDRE

Normal rockets use a single continuous burn to generate thrust, much like a huge firework.

A RDRE differs because it uses a series of small controlled explosions, or detonations, to generate thrust. Fuel and an oxidizer are injected into the combustion chamber, where they ignite and create a wave-like pattern of detonations that travel around the circumference of the chamber. This creates a continuous thrust, propelling the rocket forward.

The detonation process converts more of the fuel’s energy into thrust, and it can operate with a wider range of fuels and oxidizers. Plus, it can handle higher combustion pressures and temperatures than traditional rocket engines.

They not only use their fuels more efficiently, but they also have a higher thrust-to-weight ratio, and so they are of great interest to space engineers.

“Additive manufacturing certainly allows for very complex designs, but this novelty propagates and enables other new technologies such as advanced propulsion,” said Paul Gradl, Principal Engineer at NASA.

“Our NASA team completed hot-fire testing of an aerospike rotating detonation rocket engine (RDRE) enabled by Laser Powder Bed Fusion GRCop-42. The longest continuous duration operated with this hardware was greater than 130 seconds at 622 psi and accumulated over 10 minutes of total time. This is a huge step forward for RDRE.”

The RDRE tests were successful in proving their ability to operate for long durations while withstanding the extreme heat and pressure environments generated by detonations. The tests also demonstrated deep throttling and internal ignition bringing the technology closer to being used with future flight vehicles.

As a result of the test validations, a 10,000-pound class RDRE will be developed to compare the benefits against traditional liquid-fuelled rockets.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

New 3D-Printing Technique Creates Dual-Material Objects from Single Resin

Researchers have developed a new Vat photopolymerization technique that creates both permanent objects and dissolvable supports in a single process. According to a... read more »

Materials
New 3D-Printing Technique Creates Dual-Material Objects from Single Resin

Northumbria Receives EU Funding for Sustainable 3D-Printed Construction Research

Northumbria University has received a Marie Skłodowska-Curie Actions (MSCA) Fellowship worth over a quarter million euros to research low-carbon, 3D-printed construction materials. The... read more »

Construction
Northumbria Receives EU Funding for Sustainable 3D-Printed Construction Research

3D-Printed Sports Bra Could Help Olympic Star Break Historic Athletics Record

Nike has developed a new 3D-printed sports bra called the FlyWeb Bra for runner Faith Kipyegon's attempt to break the 4-minute mile barrier.... read more »

News
3D-Printed Sports Bra Could Help Olympic Star Break Historic Athletics Record

Vietnam Emerges in High-Tech Medicine as Vinmec Pioneers 3D-Printed Breakthroughs

Across pediatric, adult, and geriatric cases, Vietnam’s Vinmec Healthcare System's implementation of 3D printing solutions has significantly transformed patient outcomes, replacing disability with... read more »

Medical
Vietnam Emerges in High-Tech Medicine as Vinmec Pioneers 3D-Printed Breakthroughs

Johns Hopkins APL Helps Navy Overcome Metal 3D Printing Reliability Concerns

Researchers at the Johns Hopkins Applied Physics Laboratory (APL) are working with the Naval Sea Systems Command (NAVSEA) to address reliability concerns with... read more »

3D Printing Metal
Johns Hopkins APL Helps Navy Overcome Metal 3D Printing Reliability Concerns

New 3D Printing Technique Creates Glass Objects at Low Temperatures

Researchers at MIT Lincoln Laboratory have developed a new low-temperature process for 3D printing glass objects. This method creates complex glass structures without... read more »

News
New 3D Printing Technique Creates Glass Objects at Low Temperatures

Farsoon Launches High-Volume Copper Alloy 3D Printing System FS621M-Cu

Farsoon has developed a specialized 3D printing system for producing large copper alloy components for aerospace applications. The company's new FS621M-Cu system, built... read more »

3D Printing Metal
Farsoon Launches High-Volume Copper Alloy 3D Printing System FS621M-Cu

Pratt & Whitney Tests 3D Printed Rotating Part for TJ150 Engine

Pratt & Whitney has completed a series of tests on its 3D printed TJ150 turbine wheel. The company, an RTX business, reports the... read more »

Aerospace
Pratt & Whitney Tests 3D Printed Rotating Part for TJ150 Engine

University of Bristol Researchers are Testing 3D-Printed Structures for Earthquake Resistance

University of Bristol researchers are testing 3D-printed structures for earthquake resistance using a specialized shaking table. The experiment, conducted at the university's Soil... read more »

Construction
University of Bristol Researchers are Testing 3D-Printed Structures for Earthquake Resistance

3D Printing Technology Tested on Historic Bridge in Great Barrington as Potential Solution for Aging Infrastructure

Researchers from UMass Amherst and MIT have successfully applied 3D printing technology to repair a bridge in Great Barrington, Massachusetts. The test utilized... read more »

3D Printing Metal
3D Printing Technology Tested on Historic Bridge in Great Barrington as Potential Solution for Aging Infrastructure

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing