3D Printing
News Contact us Seen on social
Home / News / NASA Validates 3D Printed RDRE Aerospike Engine

NASA Validates 3D Printed RDRE Aerospike Engine

January 27, 2023

NASA has recently validated the data from hot fire tests on their 3D printed aerospike engine at their test facility in Marshall Space Flight Center, Huntsville, Alabama. The validation confirms that the engine is viable, and behaved as predicted, and as a result, NASA engineers have been given the green light to develop a larger version.

And not only is it an aerospike engine, but it is also a rotating detonation rocket engine (RDRE).

Why is this so great? Read on to find out.

Aerospike

In a traditional bell-shaped rocket nozzle the rocket exhaust over-expands as the ambient pressure drops while the rocket’s altitude increases. Basically, instead of shooting straight out of the rocket and pushing the rocket upwards, the over-expanded gasses kinda just flop around all over the place. This is inefficient.

In contrast, an aerospike engine fires the exhaust along the outside edge of a wedge-shaped protrusion called the “spike.” The spike forms one side of a “virtual” bell, with the other side being formed by the outside air. At low altitude, ambient pressure compresses the exhaust against the spike, creating a balance of pressure that gives no overall thrust but also doesn’t lose thrust by forming a partial vacuum. As the vehicle climbs to higher altitudes, the air pressure holding the exhaust against the spike decreases, and the recirculation zone at the base of the spike maintains a higher pressure, giving extra thrust as altitude increases.

This is more efficient.

But they do get very hot, and cooling them incurs a huge mass penalty. But thanks to 3D printing, lighter weight aerospike can be manufactured, allowing the fabrication of functional, lighter weight aerospike engines. And that’s what NASA has been working on here, as you can see in the image below.

RDRE aerospike
RDRE aerospike. (Image credit: NASA)

The RDRE aerospike engine was printed with an LPBF process, using GRCop-42, a copper alloy developed by NASA, which is valued for its thermal properties.

The engine was fired over a dozen times in 2022 at Marshall’s East Test Area, totaling nearly 10 minutes in duration.

RDRE

Normal rockets use a single continuous burn to generate thrust, much like a huge firework.

A RDRE differs because it uses a series of small controlled explosions, or detonations, to generate thrust. Fuel and an oxidizer are injected into the combustion chamber, where they ignite and create a wave-like pattern of detonations that travel around the circumference of the chamber. This creates a continuous thrust, propelling the rocket forward.

The detonation process converts more of the fuel’s energy into thrust, and it can operate with a wider range of fuels and oxidizers. Plus, it can handle higher combustion pressures and temperatures than traditional rocket engines.

They not only use their fuels more efficiently, but they also have a higher thrust-to-weight ratio, and so they are of great interest to space engineers.

“Additive manufacturing certainly allows for very complex designs, but this novelty propagates and enables other new technologies such as advanced propulsion,” said Paul Gradl, Principal Engineer at NASA.

“Our NASA team completed hot-fire testing of an aerospike rotating detonation rocket engine (RDRE) enabled by Laser Powder Bed Fusion GRCop-42. The longest continuous duration operated with this hardware was greater than 130 seconds at 622 psi and accumulated over 10 minutes of total time. This is a huge step forward for RDRE.”

The RDRE tests were successful in proving their ability to operate for long durations while withstanding the extreme heat and pressure environments generated by detonations. The tests also demonstrated deep throttling and internal ignition bringing the technology closer to being used with future flight vehicles.

As a result of the test validations, a 10,000-pound class RDRE will be developed to compare the benefits against traditional liquid-fuelled rockets.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Latest posts

Anisoprint Sets Up in China

Continuous fiber 3D printing company Anisoprint has opened a new office in Shanghai, China, located in the Additive Manufacturing Technology Centre (AMTC). The... read more »

News
Brake pedal Anisoprint

Researchers Use Silicone to 3D Print Accurate Brain Models

A team of researchers from the University of Florida has developed a new 3D printing technique using silicone that can produce accurate models... read more »

Medical
AMULIT

Mantis 3D Printer Can Print 45kg of Metal an Hour

3D printing startup Rosotics has unveiled its game-changing Mantis 3D printer in Mesa, Arizona. The massive, unfolding printer can produce 45 kg of... read more »

3D Printers
Mantis 3D printer

3D Printed Switchable Explosives Offer Safer Solutions for Mining and Military Applications

Researchers at the Los Alamos National Laboratory have developed "switchable" high explosives that require an inert fluid, like water, to be activated, minimizing... read more »

Military
Experimental setup and detonation time lapse

Engineer Wins Prize for 3D-Admix Concrete Printing Additive

Fort Bragg resident and civil engineer, Michael Butler, has won the Most Innovative Product Award at the 2023 World of Concrete International Exhibition.... read more »

Construction
concrete and 3D-Admix

Patent Granted for 3D Printing Embossing Technology

Northann Corp has obtained a European patent for its innovative "DSE Embossing Technology." This new method combines positive and negative embossing techniques in... read more »

News
DSE embossed example

USAF Global Strike Command Embraces 3D Printing for Future Weapon Sustainment

The Air Force Global Strike Command (AFGSC) is turning to 3D printing to address its weapon sustainment needs. As the field of additive... read more »

Military
USAF mechanical engineer

Particle Accelerator Sheds New Light on Solidification of Metals During 3D Printing

Researchers at the National Institute of Standards and Technology (NIST), KTH Royal Institute of Technology in Sweden, and other institutions have made a... read more »

3D Printing Metal
Shooting X-rays

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
  • Twitter Twitter 3D Printing
  • Fusion3 F410 Fusion3 F410
    355 x 355 x 315 mm
    $4,599
    Buy Now
  • Geeetech THUNDER Geeetech THUNDER
    250 x 250 x 260 mm
    $489
    Buy Now
  • Geeetech Mizar S Geeetech Mizar S
    255 x 255 x 260 mm
    $279
    Buy Now
  • Geeetech ALKAID Geeetech ALKAID
    82 x 130 x 190 mm
    $99
    Buy Now
  • Geeetech Mizar M Geeetech Mizar M
    255 x 255 x 260 mm
    $399
    Buy Now
  • Modix BIG-60 Modix BIG-60
    600 x 600 x 660 mm
    $4,900
    Buy Now
  • Geeetech A30T Geeetech A30T
    320 x 320 x 420 mm
    $449
    Buy Now
  • Hands-On Review: The Mole 3D Scanner
    Hands-On Review: The Mole 3D Scanner Learn More
  • Hands-On Review: Creality Ender 5 S1
    Hands-On Review: Creality Ender 5 S1 Learn More

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • Modix BIG Meter Modix BIG Meter
    1010 x 1010 x 1010 mm
    from $13,500
    Request a Quote
  • Industry MAGNUM Industry MAGNUM
    1500 x 1200 x 1200 mm
    €159.000
    Request a Quote
  • Modix BIG-120Z Modix BIG-120Z
    600 x 600 x 1200 mm
    from $7,500
    Request a Quote
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Companies

  • Modix
  • Industry
  • Geeetech

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2023 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Details
Close