3D Printing
News Videos Newsletter Contact us
Home / News / Navy Researches Additive Manufacturing for Hydrodynamics Testing
qidi

Navy Researches Additive Manufacturing for Hydrodynamics Testing

December 20, 2023

The Naval Surface Warfare Center is engaged in a study to evaluate the feasibility of using Large Scale Additive Manufacturing (LSAM) for naval model testing. This study, part of the LSAM FY 21-23 task proposal, aims to determine if 3D printed models can match the performance of traditional fiberglass models in resistance testing. The focus is on the David Taylor Model Basin (DTMB) where a model of the Arleigh-Burke class destroyer (DDG 51) was tested.

Navy Researches Additive Manufacturing for Hydrodynamics Testing
Calm water tow-tank testing of a large-scale additive manufactured (LSAM) ship model of the Arleigh-Burke class destroyer. (Image Credit: Brittny Odoms)

The initiative began as a concept in 2019-2020 with the successful 3D printing of a submarine bow model. This led to the creation of a full-size surface ship model, funded by the Naval Innovative Science and Engineering (NISE) program.

“I think one of the big interests within Carderock as a whole, and especially our department, is wanting to transition this technology for practical use,” said Engineer Kyle Mosqueda.

“We could build models a lot faster and a lot cheaper.”

The testing involved comparing the LSAM model with a fiberglass model in terms of water absorption, hull integrity, and deformation. The 3D printed model, produced by Airtech International, Inc., underwent calm water tow tank tests at speeds equivalent to 7 mph.

Preliminary results are promising, showing comparable performance between the LSAM and fiberglass models in resistance and deformation. This success has led to further funding for structural evaluation and future testing in simulated sea states.

“I’m curious to see if the DDG 51 model deflects while underway,” said Mosqueda.

“I am testing the fiberglass model and the LSAM model one after the other, and then comparing the results. I have high confidence that they will be comparable and will further validate this great piece of technology for future implementation.”

The successful implementation of LSAM in naval model testing could transform the industry’s approach to hydrodynamic research and design. This method promises enhanced efficiency in model production, potentially leading to more innovative designs and improved testing methodologies in naval engineering.

Source: dvidshub.net

Come and let us know your thoughts on our Facebook, X, and LinkedIn pages, and don’t forget to sign up for our weekly additive manufacturing newsletter to get all the latest stories delivered right to your inbox.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

University of Pennsylvania Researchers Develop Carbon-Capturing Concrete

Researchers at the University of Pennsylvania have created a new type of concrete that captures carbon dioxide while maintaining structural integrity. The material... read more »

Construction

Dutch 3D Printing Startup Novenda Technologies Raises $6.1M for Dental Manufacturing Platform

Dutch startup Novenda Technologies has secured $6.1 million in Series A funding to advance its multi-material 3D printing platform for dental products. The... read more »

Dental

Singapore Startup Creates Limited Edition 3D-Printed Collectibles from Recycled Plastic Bottles

Singapore-based startup Unigons has launched a limited collection of 3D-printed Merlion figurines made from recycled plastic bottles. The company produced 60 pieces of... read more »

News
Singapore Startup Creates Limited Edition 3D-Printed Collectibles from Recycled Plastic Bottles

Designer Uses Robotic 3D Printing to Create Dual-Purpose Dog Furniture

Designer Liam de la Bedoyere has developed the Dog Hut Side Table, a piece of furniture that combines a resting space for dogs... read more »

News
Designer Uses Robotic 3D Printing to Create Dual-Purpose Dog Furniture

Scientists 3D Print Solar-Powered Sponge for Seawater Desalination

Researchers have developed a 3D-printed aerogel material that uses sunlight to convert seawater into drinking water. The sponge-like structure contains microscopic vertical channels... read more »

News

Revopoint Launches Major Prime Event 2025 Sale with Up to 40% Off 3D Scanners and Accessories

Revopoint is kicking off its Prime Event 2025 with a series of major discounts on its range of professional 3D scanners and accessories.... read more »

News

Turkish Companies Test 3D Printed Component for Armored Vehicles

MetalWorm and Nurol Makina, both based in Ankara, Turkey, have completed testing of an armored vehicle component manufactured using Directed Energy Deposition (DED)... read more »

3D Printing Metal
Turkish Companies Test 3D Printed Component for Armored Vehicles

McGill Spinout Uses 3D Bioprinting to Create Tumors for Smarter Cancer Treatments

TissueTinker, a McGill University spinout company, has developed 3D bioprinting technology to create miniaturized tumor models for cancer drug testing. The company recently... read more »

Medical
McGill Spinout Uses 3D Bioprinting to Create Tumors for Smarter Cancer Treatments

University of Twente Awarded €13.6M for Research in Circular 3D Printing and Transparent AI

The University of Twente has received €13.6 million in funding from the 2024 NWA ORC program to lead two research projects focused on... read more »

News
University of Twente Awarded €13.6M for Research in Circular 3D Printing and Transparent AI

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing