3D Printing
News Videos Newsletter Contact us
Home / News / Network Fracture Energy Found to Follow Universal Law Across Materials
revopoint

Network Fracture Energy Found to Follow Universal Law Across Materials

January 23, 2025

MIT researchers have developed a new model that explains how different types of networked materials break and fracture. The study, published in Physical Review X, focuses on materials containing interconnected strands, such as car tires, human tissues, and spider webs.

The research team identified a universal scaling law that helps predict the energy required to fracture these networks. According to the study, the toughness of these materials can be enhanced by making the strands longer, more stretchable, or more resistant to breaking forces. The team validated their findings through practical experiments using 3D-printed stretchable networks.

Network Fracture Energy Found to Follow Universal Law Across Materials
A 3D-printed stretchable network looks like a fabric with loose stitching and large pores (Image Credit: Xuanhe Zhao)

“Our findings reveal a simple, general law that governs the fracture energy of networks across various materials and length scales,” says Xuanhe Zhao, professor of mechanical engineering and civil and environmental engineering at MIT. The research addresses a gap in existing physical models, which previously struggled to connect strand mechanics and connectivity to predict bulk fracture behavior.

Graduate student Chase Hartquist, one of the paper’s lead authors, explains that network durability can also be improved by connecting strands into larger loops. The research team found that despite variations in network structures, they all followed consistent, predictable patterns of behavior.

The findings have potential applications in the field of architected materials, where internal structure determines material properties. The research suggests new approaches for improving various materials, from soft robotic components to engineered tissues. The complete study is now available as an open-access paper in Physical Review X.

Source: news.mit.edu

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

New 3D-Printing Technique Creates Dual-Material Objects from Single Resin

Researchers have developed a new Vat photopolymerization technique that creates both permanent objects and dissolvable supports in a single process. According to a... read more »

Materials
New 3D-Printing Technique Creates Dual-Material Objects from Single Resin

Northumbria Receives EU Funding for Sustainable 3D-Printed Construction Research

Northumbria University has received a Marie Skłodowska-Curie Actions (MSCA) Fellowship worth over a quarter million euros to research low-carbon, 3D-printed construction materials. The... read more »

Construction
Northumbria Receives EU Funding for Sustainable 3D-Printed Construction Research

3D-Printed Sports Bra Could Help Olympic Star Break Historic Athletics Record

Nike has developed a new 3D-printed sports bra called the FlyWeb Bra for runner Faith Kipyegon's attempt to break the 4-minute mile barrier.... read more »

News
3D-Printed Sports Bra Could Help Olympic Star Break Historic Athletics Record

Vietnam Emerges in High-Tech Medicine as Vinmec Pioneers 3D-Printed Breakthroughs

Across pediatric, adult, and geriatric cases, Vietnam’s Vinmec Healthcare System's implementation of 3D printing solutions has significantly transformed patient outcomes, replacing disability with... read more »

Medical
Vietnam Emerges in High-Tech Medicine as Vinmec Pioneers 3D-Printed Breakthroughs

Johns Hopkins APL Helps Navy Overcome Metal 3D Printing Reliability Concerns

Researchers at the Johns Hopkins Applied Physics Laboratory (APL) are working with the Naval Sea Systems Command (NAVSEA) to address reliability concerns with... read more »

3D Printing Metal
Johns Hopkins APL Helps Navy Overcome Metal 3D Printing Reliability Concerns

New 3D Printing Technique Creates Glass Objects at Low Temperatures

Researchers at MIT Lincoln Laboratory have developed a new low-temperature process for 3D printing glass objects. This method creates complex glass structures without... read more »

News
New 3D Printing Technique Creates Glass Objects at Low Temperatures

Farsoon Launches High-Volume Copper Alloy 3D Printing System FS621M-Cu

Farsoon has developed a specialized 3D printing system for producing large copper alloy components for aerospace applications. The company's new FS621M-Cu system, built... read more »

3D Printing Metal
Farsoon Launches High-Volume Copper Alloy 3D Printing System FS621M-Cu

Pratt & Whitney Tests 3D Printed Rotating Part for TJ150 Engine

Pratt & Whitney has completed a series of tests on its 3D printed TJ150 turbine wheel. The company, an RTX business, reports the... read more »

Aerospace
Pratt & Whitney Tests 3D Printed Rotating Part for TJ150 Engine

University of Bristol Researchers are Testing 3D-Printed Structures for Earthquake Resistance

University of Bristol researchers are testing 3D-printed structures for earthquake resistance using a specialized shaking table. The experiment, conducted at the university's Soil... read more »

Construction
University of Bristol Researchers are Testing 3D-Printed Structures for Earthquake Resistance

3D Printing Technology Tested on Historic Bridge in Great Barrington as Potential Solution for Aging Infrastructure

Researchers from UMass Amherst and MIT have successfully applied 3D printing technology to repair a bridge in Great Barrington, Massachusetts. The test utilized... read more »

3D Printing Metal
3D Printing Technology Tested on Historic Bridge in Great Barrington as Potential Solution for Aging Infrastructure

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing