3D Printing
News Videos Newsletter Contact us
Home / News / New 3D Printing Method Could Reduce New Material Discovery Time to Mere Months
qidi

New 3D Printing Method Could Reduce New Material Discovery Time to Mere Months

May 18, 2023

A groundbreaking 3D printing method has emerged as a “game changer” in the field of material discovery and manufacturing. Developed by Yanliang Zhang, an associate professor at the University of Notre Dame, the high-throughput combinatorial printing (HTCP) technique enables the creation of materials that conventional manufacturing methods cannot match.

By combining multiple aerosolized nanomaterial inks in a single printing nozzle and adjusting the ink mixing ratio during the printing process, HTCP allows for precise control over the 3D architectures and compositions of printed materials.

New 3D Printing Method Could Reduce New Material Discovery Time to Mere Months
Mixing new materials on the fly. (Image credit Nature)

The HTCP method holds tremendous potential for accelerating the discovery of new materials, which is typically a slow and labor-intensive process.

“It usually takes 10 to 20 years to discover a new material,” said Yanliang Zhang, associate professor of aerospace and mechanical engineering at the University of Notre Dame.

“I thought if we could shorten that time to less than a year—or even a few months—it would be a game changer for the discovery and manufacturing of new materials.”

Mixing at the Microscale

The ability to rapidly produce materials with gradient compositions and properties at a microscale resolution opens up exciting possibilities for various industries, including clean energy, electronics, and biomedical devices.

The versatility of the HTCP method extends to a wide range of materials, including metals, semiconductors, dielectrics, polymers, and biomaterials. By generating combinational materials that function as libraries with thousands of unique compositions, HTCP offers a powerful tool for materials discovery. In fact, Zhang and his team have already leveraged this technique to identify a semiconductor material with exceptional thermoelectric properties, a significant advancement for energy harvesting and cooling applications.

Moreover, HTCP is capable of producing functionally graded materials that exhibit a gradual transition from stiff to soft. This characteristic makes them particularly valuable in biomedical applications that require compatibility between soft tissues and rigid wearable or implantable devices.

Accelerating with AI

Looking ahead, Zhang plans to combine HTCP with machine learning and artificial intelligence to further accelerate materials discovery and development. By harnessing the data-rich nature of HTCP, his team aims to create an autonomous and self-driving process for materials discovery and device manufacturing, freeing up researchers to focus on high-level thinking.

You can read the full research paper, titled “High-throughput printing of combinatorial materials from aerosols” in Nature, at this link.

Come and let us know your thoughts on our Facebook, Twitter, and LinkedIn pages, and don’t forget to sign up for our weekly additive manufacturing newsletter to get all the latest stories delivered right to your inbox.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Singapore Startup Creates Limited Edition 3D-Printed Collectibles from Recycled Plastic Bottles

Singapore-based startup Unigons has launched a limited collection of 3D-printed Merlion figurines made from recycled plastic bottles. The company produced 60 pieces of... read more »

News
Singapore Startup Creates Limited Edition 3D-Printed Collectibles from Recycled Plastic Bottles

Designer Uses Robotic 3D Printing to Create Dual-Purpose Dog Furniture

Designer Liam de la Bedoyere has developed the Dog Hut Side Table, a piece of furniture that combines a resting space for dogs... read more »

News
Designer Uses Robotic 3D Printing to Create Dual-Purpose Dog Furniture

Scientists 3D Print Solar-Powered Sponge for Seawater Desalination

Researchers have developed a 3D-printed aerogel material that uses sunlight to convert seawater into drinking water. The sponge-like structure contains microscopic vertical channels... read more »

News

Revopoint Launches Major Prime Event 2025 Sale with Up to 40% Off 3D Scanners and Accessories

Revopoint is kicking off its Prime Event 2025 with a series of major discounts on its range of professional 3D scanners and accessories.... read more »

News

Turkish Companies Test 3D Printed Component for Armored Vehicles

MetalWorm and Nurol Makina, both based in Ankara, Turkey, have completed testing of an armored vehicle component manufactured using Directed Energy Deposition (DED)... read more »

3D Printing Metal
Turkish Companies Test 3D Printed Component for Armored Vehicles

McGill Spinout Uses 3D Bioprinting to Create Tumors for Smarter Cancer Treatments

TissueTinker, a McGill University spinout company, has developed 3D bioprinting technology to create miniaturized tumor models for cancer drug testing. The company recently... read more »

Medical
McGill Spinout Uses 3D Bioprinting to Create Tumors for Smarter Cancer Treatments

University of Twente Awarded €13.6M for Research in Circular 3D Printing and Transparent AI

The University of Twente has received €13.6 million in funding from the 2024 NWA ORC program to lead two research projects focused on... read more »

News
University of Twente Awarded €13.6M for Research in Circular 3D Printing and Transparent AI

China’s 3D Printed Micro Turbojet Engine Completes Maiden Flight

The Aero Engine Corporation of China (AECC) has successfully completed the first flight test of its 3D-printed micro turbojet engine in Inner Mongolia... read more »

Aerospace
China's 3D Printed Micro Turbojet Engine Completes Maiden Flight

Laser-Assisted Cold Spray Technology Enhances Material Deposition Process

Researchers at the University of Cambridge's Center for Industrial Photonics have developed a new additive manufacturing technique called laser-assisted cold spray (LACS). The... read more »

3D Printing Metal
Laser-Assisted Cold Spray Technology Enhances Material Deposition Process

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing