3D Printing
News Videos Newsletter Contact us
Home / News / New 3D Printing Method Could Reduce New Material Discovery Time to Mere Months
qidi

New 3D Printing Method Could Reduce New Material Discovery Time to Mere Months

May 18, 2023

A groundbreaking 3D printing method has emerged as a “game changer” in the field of material discovery and manufacturing. Developed by Yanliang Zhang, an associate professor at the University of Notre Dame, the high-throughput combinatorial printing (HTCP) technique enables the creation of materials that conventional manufacturing methods cannot match.

By combining multiple aerosolized nanomaterial inks in a single printing nozzle and adjusting the ink mixing ratio during the printing process, HTCP allows for precise control over the 3D architectures and compositions of printed materials.

New 3D Printing Method Could Reduce New Material Discovery Time to Mere Months
Mixing new materials on the fly. (Image credit Nature)

The HTCP method holds tremendous potential for accelerating the discovery of new materials, which is typically a slow and labor-intensive process.

“It usually takes 10 to 20 years to discover a new material,” said Yanliang Zhang, associate professor of aerospace and mechanical engineering at the University of Notre Dame.

“I thought if we could shorten that time to less than a year—or even a few months—it would be a game changer for the discovery and manufacturing of new materials.”

Mixing at the Microscale

The ability to rapidly produce materials with gradient compositions and properties at a microscale resolution opens up exciting possibilities for various industries, including clean energy, electronics, and biomedical devices.

The versatility of the HTCP method extends to a wide range of materials, including metals, semiconductors, dielectrics, polymers, and biomaterials. By generating combinational materials that function as libraries with thousands of unique compositions, HTCP offers a powerful tool for materials discovery. In fact, Zhang and his team have already leveraged this technique to identify a semiconductor material with exceptional thermoelectric properties, a significant advancement for energy harvesting and cooling applications.

Moreover, HTCP is capable of producing functionally graded materials that exhibit a gradual transition from stiff to soft. This characteristic makes them particularly valuable in biomedical applications that require compatibility between soft tissues and rigid wearable or implantable devices.

Accelerating with AI

Looking ahead, Zhang plans to combine HTCP with machine learning and artificial intelligence to further accelerate materials discovery and development. By harnessing the data-rich nature of HTCP, his team aims to create an autonomous and self-driving process for materials discovery and device manufacturing, freeing up researchers to focus on high-level thinking.

You can read the full research paper, titled “High-throughput printing of combinatorial materials from aerosols” in Nature, at this link.

Come and let us know your thoughts on our Facebook, Twitter, and LinkedIn pages, and don’t forget to sign up for our weekly additive manufacturing newsletter to get all the latest stories delivered right to your inbox.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

ETH Zurich 3D Prints Recycled Plastic Structure for Swiss Ice Cream Shop

ETH Zurich students have completed a 3D-printed ice cream shop in the Swiss Alpine village of Mulegns. The project, called Gelateria, was designed... read more »

Construction
ETH Zurich 3D Prints Recycled Plastic Structure for Swiss Ice Cream Shop

Hugo Launches 3D Printed Loafers with Zellerfeld

Hugo, the younger brand under Hugo Boss, has partnered with 3D printing company Zellerfeld to create a fully 3D-printed loafer. The shoe is... read more »

Fashion
Hugo Launches 3D Printed Loafers with Zellerfeld

3D Printed Resin Combines Rubber Flexibility with Plastic Strength, Surprising Scientists

Researchers at the University of Texas at Austin have developed a 3D printing method that can create objects with both soft and hard... read more »

News
3D Printed Resin Combines Rubber Flexibility with Plastic Strength, Surprising Scientists

LPE Supports Queen’s Propulsion Laboratory with 3D Printed Rocket Engine Chamber

Students at Queen's University Belfast have developed what they describe as Ireland's first student-built liquid rocket engine. The Kelvin Mk.1, named after Belfast-born... read more »

3D Printing Metal
LPE Supports Queen’s Propulsion Laboratory with 3D Printed Rocket Engine Chamber

Dassault Systèmes and Patrick Jouin Unveil New 3D Printed Chair

Dassault Systèmes and French designer Patrick Jouin have unveiled Ta.Tamu, a 3D-printed chair developed using the company's 3DEXPERIENCE platform. The project represents a... read more »

News
Dassault Systèmes and Patrick Jouin Unveil New 3D Printed Chair

Endemic Architecture Debuts 3D Printed Homes in Rural California

A development of five 3D-printed homes called Corduroy Castles is currently under construction in Olivehurst, California, a rural town in Yuba County located... read more »

Construction
Endemic Architecture Debuts 3D Printed Homes in Rural California

3D Printed Replica of a 500-year-old Prosthetic Hand Hints at Life of a Renaissance Amputee

Researchers at Auburn University are using 3D printing technology to recreate Renaissance-era prosthetic devices, providing new insights into historical amputee experiences. The interdisciplinary... read more »

News
3D Printed Replica of a 500-year-old Prosthetic Hand Hints at Life of a Renaissance Amputee

United Utilities Expands 3D Printing for Water Infrastructure Operations

United Utilities is incorporating 3D printing technology into its operations following the completion of a two-year Water Industry Printfrastructure project. The initiative, funded... read more »

News
United Utilities Expands 3D Printing for Water Infrastructure Operations

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing