3D Printing
News Videos Newsletter Contact us
Home / News / New 3D Printing Method Enables Personalized Implants and Tissue Repair
qidi

New 3D Printing Method Enables Personalized Implants and Tissue Repair

August 5, 2024

A new advancement in 3D printing technology is opening doors for various medical applications, including custom implants and heart bandages. Researchers at CU Boulder, in collaboration with the University of Pennsylvania, have developed a 3D printing method that produces materials that are both strong and flexible, capable of adapting to the body’s specific needs.

Innovative Material for Medical Use

The team, led by Professor Jason Burdick of CU Boulder’s BioFrontiers Institute, has created a material that can withstand the heart’s constant beating, endure joint pressure, and conform to different shapes and sizes. Their findings were published in the August 2 edition of Science.

“Cardiac and cartilage tissues are similar in that they have very limited capacity to repair themselves. When they’re damaged, there is no turning back,” said Burdick. “By developing new, more resilient materials to enhance that repair process, we can have a big impact on patients.”

New 3D Printing Method Enables Personalized Implants and Tissue Repair
Matt Davidson, a research associate in the Burdick Lab, displays a 3D-printed material designed for various medical applications.

Nature-Inspired Innovation

Traditional biomedical devices are typically mass-produced, lacking the flexibility for personalized implants. 3D printing offers a solution by enabling the creation of customized shapes and structures. Unlike conventional printers, 3D printers build objects layer by layer using materials such as plastics, metals, or even living cells.

Hydrogels, often used in making contact lenses, have been a promising material for artificial tissues and implants. However, conventional 3D-printed hydrogels often fail under stress, either breaking when stretched or cracking under pressure.

Burdick’s team drew inspiration from worms, which form solid yet flexible “blobs” by entangling themselves. By mimicking this entanglement with long molecular chains, they developed a new printing method called CLEAR (Continuous-curing after Light Exposure Aided by Redox initiation).

Remarkable Resilience and Adhesion

Tests showed that materials printed with CLEAR were more durable than those made with traditional 3D printing methods. One researcher even ran over a sample with a bike, demonstrating its strength. Additionally, these materials adhered well to animal tissues and organs.

“We can now 3D print adhesive materials strong enough to support tissue mechanically,” said Matt Davidson, a research associate in the Burdick Lab.

Potential for Transforming Medical Care

Burdick envisions these materials being used to repair heart defects, deliver tissue-regenerating drugs directly to organs, support cartilage, and even replace traditional sutures with needle-free options that minimize tissue damage.

The team has filed for a provisional patent and plans further studies to understand how tissues interact with these new materials.

Beyond medicine, this method has potential applications in research and manufacturing, offering a more environmentally friendly 3D printing process by eliminating the need for additional energy to harden parts.

“This is a simple 3D processing method that people could ultimately use in their own academic labs as well as in industry to improve the mechanical properties of materials for a wide variety of applications,” said Abhishek Dhand, a researcher in the Burdick Lab and doctoral candidate in the Department of Bioengineering at the University of Pennsylvania.

For more detailed information, the full study can be accessed at Science.org. The original article is available at EurekAlert.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Scottish Maritime Project Shows Promise for 3D Printed Ship Components

A Scottish project using large-scale additive manufacturing for shipbuilding components has completed its second phase, demonstrating potential benefits for the maritime industry. The... read more »

News
Scottish Maritime Project Shows Promise for 3D Printed Ship Components

Navy Maintenance Center Uses 3D Printing to Replace Destroyer Pump Component at Fraction of Conventional Cost

The Southeast Regional Maintenance Center (SERMC) has successfully used 3D printing to manufacture a replacement cooling rotor for an Arleigh Burke-class guided missile... read more »

Military
Navy Maintenance Center Uses 3D Printing to Replace Destroyer Pump Component at Fraction of Conventional Cost

Rapid Fusion Launches AI Assistant for Large-Format 3D Printers

British manufacturer Rapid Fusion has introduced "Bob," an AI-powered assistant designed to optimize operations for its large-format 3D printing systems. The company developed... read more »

News
Rapid Fusion Launches AI Assistant for Large-Format 3D Printers

Creality Submits IPO Prospectus for Hong Kong Stock Exchange Listing

Shenzhen-based 3D printer manufacturer Creality has submitted a prospectus to the Hong Kong Stock Exchange for a main board listing. The company began... read more »

News
Creality Submits IPO Prospectus for Hong Kong Stock Exchange Listing

Graphjet Technology Partners with Malaysian University on 3D-Printed Heat Sink Development

Graphjet Technology has entered into a collaboration agreement with the Centre for Materials Engineering and Smart Manufacturing (MERCU) at Universiti Kebangsaan Malaysia (UKM).... read more »

News
Graphjet Technology Partners with Malaysian University on 3D-Printed Heat Sink Development

Humtown drives US Manufacturing Comeback with Additive Sand Casting

Humtown Products, an Ohio-based company, is positioning itself to serve manufacturers looking to bring production back to the United States. The company specializes... read more »

News
Humtown drives US Manufacturing Comeback with Additive Sand Casting

Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Oak Ridge National Laboratory has released a comprehensive dataset for its Peregrine software, which monitors and analyzes parts created through powder bed additive... read more »

News
Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Creality Expands Flagship Lineup with K2 and K2 Pro 3D Printers

Creality has announced the launch of the K2 and K2 Pro, two new additions to its high-end K series. Built on a rigid... read more »

3D Printers
Creality Expands Flagship Lineup with K2 and K2 Pro 3D Printers

Farsoon and Stark Future Complete KLINGA Project, Producing Over 1,000 Titanium Parts

Farsoon Europe GmbH and Stark Future have completed the KLINGA Project, a collaborative engineering initiative that produced more than 1,000 titanium parts using... read more »

3D Printing Metal
Farsoon and Stark Future Complete KLINGA Project, Producing Over 1,000 Titanium Parts

Swiss Steel Group’s Ugitech Introduces Custom Wire for 3D Metal Printing

Swiss Steel Group and its French subsidiary Ugitech have launched UGIWAM wire, a new product designed for wire arc additive manufacturing (WAAM). The... read more »

3D Printing Metal
Swiss Steel Group's Ugitech Introduces Custom Wire for 3D Metal Printing

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing