3D Printing
News Videos Newsletter Contact us
Home / News / NTU Singapore and Caltech Prints Stiffness-shifting Chain Mail
revopoint

NTU Singapore and Caltech Prints Stiffness-shifting Chain Mail

August 27, 2021

Nanyang Technological University (Singapore) and California Institute of Technology (US) have recently published a paper in Nature, detailing research into a new chain mail-like “smart fabric” that changes stiffness when compressed.

The chain mail itself is printed with Nylon, and each chain link is in the shape of an octahedron, as you can see below. The hollowness of the unit particles allows low density and yet high tensile stiffness from the overall fabric.

Octagonal units
Octagonal units make the whole (Image credit: NTU Singapore)

The individual “unit particles” are topologically interlocked, meaning that they are linked like chain mail, constraining the unit particles to form the shape of a continuous loose fabric. The paper does indeed state that the fabric is more like a 2 dimensional structure overall, despite the obviously 3 dimensional unit particles. The chain mail specimens were printed in single pieces, ready to function.

To control the stiffness, the researchers placed the chain mail into a transparent plastic back, and removed the air from the bag using vacuum. This effectively compressed the unit particles together, causing the unit particles to jam together, restricting the movement of each particle, and therefore increasing the stiffness of the overall fabric structure. In fact the mechanism by which these particles lock together is called “jamming transition”, because they jam together, see?

The pressure increases the packing density of the fabric, causing each particle to have more contact with its neighbours, resulting, for the octahedron-based fabric, in a structure that is 25 times more rigid.

When formed into a flat, table-shaped structure and vacuum-locked in place, the fabric could hold a load of 1.5kgs, more than 50 times the fabrics’ own weight.

The nature of the octahedrons also means that the structure can lock into non-planar shapes as well, such as this bridge shape…

Bridge shape
Bridge shape carrying a load (Image credit: Caltech)

In another experiment, the researchers dropped a small, 30 gram steel ball onto the chain mail. The impact deformed the fabric by up to 26 mm when it was relaxed, but by only 3 mm when it was stiffened, a six times reduction in penetration depth.

soft
Testing the impact resistance of the material when unjammed (soft). (Image credit: Caltech)
rigid
Testing the impact resistance of the material when jammed (rigid). (Image credit: Caltech)

“We wanted to make materials that can change stiffness on command. We’d like to create a fabric that goes from soft and foldable to rigid and load-bearing in a controllable way.” said Professor Chiara Daraio, Professor of Mechanical Engineering and Applied Physics at Caltech.

You can see a video of the chain mail in action in the video below.

“With an engineered fabric that is lightweight and tuneable – easily changeable from soft to rigid – we can use it to address the needs of patients and the ageing population, for instance, to create exoskeletons that can help them stand, carry loads and assist them with their daily tasks,” said Asst. Prof Yifan Wang from the NTU Singapore School of Mechanical and Aerospace Engineering,

“Inspired by ancient chain mail armour, we used plastic hollow particles that are interlocked to enhance our tuneable fabrics’ stiffness,” Asst. Prof Wang from NTU’s School of Mechanical and Aerospace Engineering

“To further increase the material’s stiffness and strength, we are now working on fabrics made from various metals including aluminium, which could be used for larger-scale industrial applications requiring higher load capacity, such as bridges or buildings.”

You can see a picture of one of the metal examples in the image below.

metal
Stiffness-shifting metal mail (Image credit: Caltech)

In future, the Caltech / NTU Singapore team aims to branch out into other materials, as well as research new (non-vacuum assisted) means of controlling the rigidity of the fabric structures, such as with magnetism, electricity or temperature.

If you’d like to know more about the chain mail (and maybe even design + print your own), you can access the paper over at this link.

lunark-featured
Related Story
Danish Duo 3D Print Lunar Habitat
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

3D Printed Metal Molds Poised to Accelerate US Auto Manufacturing

Oak Ridge National Laboratory (ORNL) researchers have demonstrated that 3D-printed metal molds offer significant advantages for producing large composite components for automotive manufacturing.... read more »

Automotive

Auburn-based XO Armor Joins Montgomery TechLab’s Defense Accelerator Program

XO Armor, a company that specializes in on-site 3D printing of custom-fit protective orthotics, has been selected for the first cohort of Montgomery... read more »

News
Auburn-based XO Armor Joins Montgomery TechLab's Defense Accelerator Program

ASTM International Teams with Major Manufacturers to Create Additive Manufacturing Certification

ASTM International's Additive Manufacturing Center of Excellence (AM CoE) has introduced a new manufacturer certification program aimed at improving quality assurance and process... read more »

News
ASTM International Teams with Major Manufacturers to Create Additive Manufacturing Certification

Egypt to Boost Domestic Spare Parts Production with Additive Manufacturing

Egypt's Arab Organization for Industrialization (AOI) hosted a workshop on June 2nd, 2025, to advance the localization of industrial spare parts manufacturing using... read more »

News
Egypt to Boost Domestic Spare Parts Production with Additive Manufacturing

3D Printing Breakthrough Reduces Waste While Enabling Complex Designs

MIT engineers have developed a new 3D printing resin that forms two different types of solids depending on the light used. The material... read more »

Materials
3D Printing Breakthrough Reduces Waste While Enabling Complex Designs

Magnetic 3D Printed Pen Shows Promise for Parkinson’s Diagnosis

Researchers have developed a 3D-printed pen containing magnetic ink that may help identify Parkinson's disease through handwriting analysis. The device captures motion patterns... read more »

News

Deuter Introduces New Mountain Bike Pack with 3D Printed Spine Protection

German pack manufacturer Deuter has launched the Hiline, a new mountain bike hydration pack featuring 3D-printed spine protection technology. The pack is specifically... read more »

News
Deuter Introduces New Mountain Bike Pack with 3D Printed Spine Protection

UltiMaker Launches S6 3D Printer

UltiMaker has announced the release of the S6 3D printer, designed specifically for engineers, manufacturing teams, and maintenance crews. The new printer focuses... read more »

News
UltiMaker Launches S6 3D Printer

Thought3D Launches Magigoo Glide Kit and Supergrip to Improve 3D Print Adhesion

Thought3D just introduced two new products designed to meet evolving needs in additive manufacturing. The Magigoo Glide Kit and Magigoo Supergrip respond to... read more »

News
Thought3D Launches Magigoo Glide Kit and Supergrip to Improve 3D Print Adhesion

3D Printed Electric Motorcycle by DAB Motors Inspired by Akira’s Iconic Bike

DAB Motors and Vita Veloce Team (VVT) have unveiled a custom electric motorcycle featuring 3D printed bodywork inspired by the iconic bike from... read more »

Automotive

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing