3D Printing
News Videos Newsletter Contact us
Home / News / ORNL Testing Robotic AM System with Neutron Source
revopoint

ORNL Testing Robotic AM System with Neutron Source

December 20, 2022

Oak Ridge National Laboratory seems to have all the best toys where it comes to testing 3D printing processes for metals, and the latest experiment at ORNL appears to reinforce that notion.

The researchers at ORNL have developed a robotic platform for studying the behavior of metal bonding during AM processes, which has been installed in their VULCAN engineering diffraction instrument at ORNL’s Spallation Neutron Source (SNS).

Read on to know more about the experiment.

OpeN-AM

The SNS facility is powered by a linear particle accelerator that uses beams of neutrons to study materials at the atomic scale.

The 6-axis robot platform is named “OpeN-AM” (Operando Neutrons-Additive Manufacturing), which is their acronym signifying that the robot uses neutrinos to study the process while it is underway. The robotic arm is fitted with a welding torch for use during a wire arc-based AM process.

OpeN-AM
The OpeN-AM experimental platform, installed at the VULCAN instrument. (Image credit: ORNL)

As the wire contacts the substrate, an electric current is applied that melts the wire and creates the bond to the substrate. It can also be fitted with a high power laser for melting a wire or powder feedstock into a melt pool.

The robotic AM arm also has a CNC companion stationed next to it, for subtractive processes, meaning that the OpeN-AM system has hybrid additive/subtractive capabilities.

The build table is fairly advanced also, and has multiple degrees of freedom to allow scanning from different angles, and is also equipped with cooling channels to alter the temperature of the part for studying the effects of heat during the process.

VULCAN

To scan the parts as they are built during experiments, the researchers will use the VULCAN engineering diffraction instrument. VULCAN fires a beam of neurons at the target area and measures the distance between atoms in metals as they’re exposed to extreme degrees of temperature and pressure, building a picture on how stress is forming. Multiple cameras are positioned around the area, so that temperature can be monitored during the process.

All of this process is automated, with everything synchronizing at the push of a button.

VULCAN
VULCAN engineering diffraction instrument. (Image credit: ORNL)

So far, the researchers have performed experiments on basic shapes, but the build area inside the VULCAN apparatus is large enough to accommodate parts as large as an engine.

“There’s only so much you can learn about a material after it’s processed using traditional characterization tools. The goal of the OpeN-AM project is to provide a new, more advanced way of characterizing the process that enables us to see inside the materials as they’re being produced,” said Alex Plotkowski, project lead at ORNL.

“Neutron experiments are a key component that allow us to observe and measure changes in the materials, such as temperature, how phase transformations are happening, and how the distributions of residual stresses are evolving. These insights are critical to optimizing the technology to make materials with improved performance.”

Accelerated with AI

Typically, experiments of this nature are time consuming, requiring collection of neutron data from various points around the object under study. Each location could take 30 seconds to collect the data, with the experiment needing to be paused multiple times. Often this could result in the experiment taking as long as 10 hours.

Thanks to the wonders of AI, the researchers are able to take a subset of data points which allow the machine where to collect data from next. The autonomous system then repositions the sample so the neutron beam can scan there.

It is a vastly optimized approach and allows researchers to make the best use of their limited experiment time. They also benefit from reduced data storage, as the system does not collect superfluous data when guided by the AI.

All in all, the algorithm can estimate residual stress characterizations in about one-third of the time that it would have taken before.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

3D Printed Metal Molds Poised to Accelerate US Auto Manufacturing

Oak Ridge National Laboratory (ORNL) researchers have demonstrated that 3D-printed metal molds offer significant advantages for producing large composite components for automotive manufacturing.... read more »

Automotive

Auburn-based XO Armor Joins Montgomery TechLab’s Defense Accelerator Program

XO Armor, a company that specializes in on-site 3D printing of custom-fit protective orthotics, has been selected for the first cohort of Montgomery... read more »

News
Auburn-based XO Armor Joins Montgomery TechLab's Defense Accelerator Program

ASTM International Teams with Major Manufacturers to Create Additive Manufacturing Certification

ASTM International's Additive Manufacturing Center of Excellence (AM CoE) has introduced a new manufacturer certification program aimed at improving quality assurance and process... read more »

News
ASTM International Teams with Major Manufacturers to Create Additive Manufacturing Certification

Egypt to Boost Domestic Spare Parts Production with Additive Manufacturing

Egypt's Arab Organization for Industrialization (AOI) hosted a workshop on June 2nd, 2025, to advance the localization of industrial spare parts manufacturing using... read more »

News
Egypt to Boost Domestic Spare Parts Production with Additive Manufacturing

3D Printing Breakthrough Reduces Waste While Enabling Complex Designs

MIT engineers have developed a new 3D printing resin that forms two different types of solids depending on the light used. The material... read more »

Materials
3D Printing Breakthrough Reduces Waste While Enabling Complex Designs

Magnetic 3D Printed Pen Shows Promise for Parkinson’s Diagnosis

Researchers have developed a 3D-printed pen containing magnetic ink that may help identify Parkinson's disease through handwriting analysis. The device captures motion patterns... read more »

News

Deuter Introduces New Mountain Bike Pack with 3D Printed Spine Protection

German pack manufacturer Deuter has launched the Hiline, a new mountain bike hydration pack featuring 3D-printed spine protection technology. The pack is specifically... read more »

News
Deuter Introduces New Mountain Bike Pack with 3D Printed Spine Protection

UltiMaker Launches S6 3D Printer

UltiMaker has announced the release of the S6 3D printer, designed specifically for engineers, manufacturing teams, and maintenance crews. The new printer focuses... read more »

News
UltiMaker Launches S6 3D Printer

Thought3D Launches Magigoo Glide Kit and Supergrip to Improve 3D Print Adhesion

Thought3D just introduced two new products designed to meet evolving needs in additive manufacturing. The Magigoo Glide Kit and Magigoo Supergrip respond to... read more »

News
Thought3D Launches Magigoo Glide Kit and Supergrip to Improve 3D Print Adhesion

3D Printed Electric Motorcycle by DAB Motors Inspired by Akira’s Iconic Bike

DAB Motors and Vita Veloce Team (VVT) have unveiled a custom electric motorcycle featuring 3D printed bodywork inspired by the iconic bike from... read more »

Automotive

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing