3D Printing
News Videos Newsletter Contact us
Home / News / Photopolymer Prints that Grow
qidi

Photopolymer Prints that Grow

May 15, 2020

What use could you find for a structure that grows in volume with the application of heat?

Maybe some form of spacecraft structure, where volume requirements are at a premium? These are exactly the questions that researchers at Department of NanoEngineering, University of California, are asking themselves, now that they have developed an expanding photopolymer resin that does just that.

The team has demonstrated by use of a custom polymer feedstock, they are able to print structures that are capable of swelling 40x their own volume while retaining their intended overall shape.

What does that mean?

Take a look at the video below.

The original 3D printed structure is printed in this demonstration with SLA type printing. Specifically the team utilized a fairly accessible desktop resin 3D printer.

After the custom resin is printed with the traditional stereolithography process, it is placed into an oven and heated. As the volatile components in the resin are heated, they outgas and expand as gases, causing the formation of expanded structural cells (much like a typical engineering foam) and as a result, the overall structure increases in volume.

Of course, it takes more than just a budget printer to get results, and in this case the magic comes from the team’s research into the feedstock itself.

A variety of monomers were tested during experimentation, including MMA and HEMA, along with a variety of curing times and photoinitiators. The optimum combination of factors resulted in the most geometrically stable subjects combined with the highest expansion ratio of the materials.

You can see one of the more basic demonstrations of these principles in the image below. As you can see, various samples with differing compositions are places on the oven plate and heated.

The optimum candidates are the ones which expand the most while retaining their original cylindrical shape.

Photograph of HEA (left) and HEMA (right) samples after curing. Source: <a href="https://pubs.acs.org/doi/abs/10.1021/acsami.0c02683" target="_blank" rel="noopener noreferrer">https://pubs.acs.org</a>

Expandable Structure Examples

Examples of the applications of such research can include, boats, space structures, and wind turbines.

So far the team has demonstrated two of these items, albeit at smaller scales.

Firstly, a small boat was 3D printed in the chosen material. In its original, unexpanded form, the boat was loaded with mass until it sank.

The boat was then heated in the oven and allowed to expand. Once expanded the boat was loaded with weight until it sank, and the weight values were noted.

You can see a demonstration of this experiment in the video below.

in the final segment of video, you will have noticed a small-scale wind turbine that has been manufactured with this process.

The Drawback…

While this early demonstration does show a potential path for research into heat activated volumetric growing structures, there is one slight drawback at present:

The structures currently have less strength than traditionally manufactured polystyrene products.

So while they are not the strongest structures, they certainly add value to any situation where transporting large volume items to a site may be concerned. In terms of transportation costs alone, where volume is a cost driver, simply sending the original sized objects to a site where they can be expanded in-situ with a heater could prove advantageous in a number of sector, space and wind farming being two such examples.

Have you ever seen a video of a wind turbine blade being transported? These are not trivial matters.

Those are a few applications of this technology further down the road.

According to the university team, it could also be used for cushioning, airfoils, buoyancy aids or even expandable habitats for astronauts.

So, there it is. 3D printing and saving volume, in a nutshell.

But that begs a final question.

Given that there is a time-dependent element, is this 3D printing, or is it an application of 4D printing?

Related Story
3D Printing & Embedded Electronics – How AM Enables Smarter Objects
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Swiss Steel Group’s Ugitech Introduces Custom Wire for 3D Metal Printing

Swiss Steel Group and its French subsidiary Ugitech have launched UGIWAM wire, a new product designed for wire arc additive manufacturing (WAAM). The... read more »

3D Printing Metal
Swiss Steel Group's Ugitech Introduces Custom Wire for 3D Metal Printing

QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

QIDI Tech has introduced the QIDI Q2, a compact, beginner-friendly desktop 3D printer engineered to bring professional-grade capabilities into the home. Designed as... read more »

3D Printers
QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

Purdue University's Composites Manufacturing and Simulation Center has partnered with Thermwood to combine predictive simulation technology with large-scale 3D printing for composite parts... read more »

News
Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Daniel Rau, an assistant professor of mechanical engineering at the University of Wyoming, has received a $198,932 grant from the National Science Foundation... read more »

Materials
University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Researchers led by Mejia et al. have developed a real-time monitoring and control system for direct ink write (DIW) 3D printing of thermosetting... read more »

Materials
Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Central Saint Martins Graduate Creates 3D Printed Tennis Balls

Central Saint Martins graduate Noé Chouraqui has developed Point, a 3D-printed tennis ball made from bio-based, recyclable filament. The balls maintain the traditional... read more »

News
Central Saint Martins Graduate Creates 3D Printed Tennis Balls

ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

Researchers at ETH Zurich and the University Hospital of Zurich have developed a new type of cardiac patch designed to both seal and... read more »

Medical
ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

The Royal Air Force has installed its first internally manufactured 3D printed component on an operational Typhoon fighter jet at RAF Coningsby this... read more »

Aerospace
RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

Researchers from the University of California, Irvine and Japan's Okayama and Toho universities have published findings about how chitons develop their exceptionally hard... read more »

Materials
Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

3D Printed Modular Bridge Displayed at Venice Exhibition Features Demountable Design

A 3D-printed concrete bridge called Diamanti has been unveiled at the Time, Space, Existence exhibition in Venice as part of a research collaboration... read more »

Construction
3D Printed Modular Bridge Displayed at Venice Exhibition Features Demountable Design

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing