3D Printing
News Videos Newsletter Contact us
Home / News / Photopolymer Prints that Grow
qidi

Photopolymer Prints that Grow

May 15, 2020

What use could you find for a structure that grows in volume with the application of heat?

Maybe some form of spacecraft structure, where volume requirements are at a premium? These are exactly the questions that researchers at Department of NanoEngineering, University of California, are asking themselves, now that they have developed an expanding photopolymer resin that does just that.

The team has demonstrated by use of a custom polymer feedstock, they are able to print structures that are capable of swelling 40x their own volume while retaining their intended overall shape.

What does that mean?

Take a look at the video below.

The original 3D printed structure is printed in this demonstration with SLA type printing. Specifically the team utilized a fairly accessible desktop resin 3D printer.

After the custom resin is printed with the traditional stereolithography process, it is placed into an oven and heated. As the volatile components in the resin are heated, they outgas and expand as gases, causing the formation of expanded structural cells (much like a typical engineering foam) and as a result, the overall structure increases in volume.

Of course, it takes more than just a budget printer to get results, and in this case the magic comes from the team’s research into the feedstock itself.

A variety of monomers were tested during experimentation, including MMA and HEMA, along with a variety of curing times and photoinitiators. The optimum combination of factors resulted in the most geometrically stable subjects combined with the highest expansion ratio of the materials.

You can see one of the more basic demonstrations of these principles in the image below. As you can see, various samples with differing compositions are places on the oven plate and heated.

The optimum candidates are the ones which expand the most while retaining their original cylindrical shape.

Photograph of HEA (left) and HEMA (right) samples after curing. Source: <a href="https://pubs.acs.org/doi/abs/10.1021/acsami.0c02683" target="_blank" rel="noopener noreferrer">https://pubs.acs.org</a>

Expandable Structure Examples

Examples of the applications of such research can include, boats, space structures, and wind turbines.

So far the team has demonstrated two of these items, albeit at smaller scales.

Firstly, a small boat was 3D printed in the chosen material. In its original, unexpanded form, the boat was loaded with mass until it sank.

The boat was then heated in the oven and allowed to expand. Once expanded the boat was loaded with weight until it sank, and the weight values were noted.

You can see a demonstration of this experiment in the video below.

in the final segment of video, you will have noticed a small-scale wind turbine that has been manufactured with this process.

The Drawback…

While this early demonstration does show a potential path for research into heat activated volumetric growing structures, there is one slight drawback at present:

The structures currently have less strength than traditionally manufactured polystyrene products.

So while they are not the strongest structures, they certainly add value to any situation where transporting large volume items to a site may be concerned. In terms of transportation costs alone, where volume is a cost driver, simply sending the original sized objects to a site where they can be expanded in-situ with a heater could prove advantageous in a number of sector, space and wind farming being two such examples.

Have you ever seen a video of a wind turbine blade being transported? These are not trivial matters.

Those are a few applications of this technology further down the road.

According to the university team, it could also be used for cushioning, airfoils, buoyancy aids or even expandable habitats for astronauts.

So, there it is. 3D printing and saving volume, in a nutshell.

But that begs a final question.

Given that there is a time-dependent element, is this 3D printing, or is it an application of 4D printing?

Related Story
3D Printing & Embedded Electronics – How AM Enables Smarter Objects
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

3D-Printed Insects Help Scientists Map the Limits of Mimicry in Nature

Researchers at the University of Nottingham have developed a method to 3D print life-sized, color-accurate insect models for biological research. The team, led... read more »

Environmental

University of Hong Kong Scientists Explore Growing Organs with 3D Printing Technology

Researchers at the University of Hong Kong (HKU) are working to combine 3D-printed respiratory tissue with lab-grown organoids to create functional airways for... read more »

Bioprinting
University of Hong Kong Scientists Explore Growing Organs with 3D Printing Technology

SHINING 3D Unveils EinScan Rigil with Tri-Mode Scanning for Pro-Level Flexibility

SHINING 3D has launched its newest flagship 3D scanner, the EinScan Rigil — touted as the world’s first 3D scanner featuring Tri-Mode operation... read more »

News
SHINING 3D Unveils EinScan Rigil with Tri-Mode Scanning for Pro-Level Flexibility

ETH Zurich 3D Prints Recycled Plastic Structure for Swiss Ice Cream Shop

ETH Zurich students have completed a 3D-printed ice cream shop in the Swiss Alpine village of Mulegns. The project, called Gelateria, was designed... read more »

Construction
ETH Zurich 3D Prints Recycled Plastic Structure for Swiss Ice Cream Shop

Hugo Launches 3D Printed Loafers with Zellerfeld

Hugo, the younger brand under Hugo Boss, has partnered with 3D printing company Zellerfeld to create a fully 3D-printed loafer. The shoe is... read more »

Fashion
Hugo Launches 3D Printed Loafers with Zellerfeld

3D Printed Resin Combines Rubber Flexibility with Plastic Strength, Surprising Scientists

Researchers at the University of Texas at Austin have developed a 3D printing method that can create objects with both soft and hard... read more »

News
3D Printed Resin Combines Rubber Flexibility with Plastic Strength, Surprising Scientists

LPE Supports Queen’s Propulsion Laboratory with 3D Printed Rocket Engine Chamber

Students at Queen's University Belfast have developed what they describe as Ireland's first student-built liquid rocket engine. The Kelvin Mk.1, named after Belfast-born... read more »

3D Printing Metal
LPE Supports Queen’s Propulsion Laboratory with 3D Printed Rocket Engine Chamber

Dassault Systèmes and Patrick Jouin Unveil New 3D Printed Chair

Dassault Systèmes and French designer Patrick Jouin have unveiled Ta.Tamu, a 3D-printed chair developed using the company's 3DEXPERIENCE platform. The project represents a... read more »

News
Dassault Systèmes and Patrick Jouin Unveil New 3D Printed Chair

Endemic Architecture Debuts 3D Printed Homes in Rural California

A development of five 3D-printed homes called Corduroy Castles is currently under construction in Olivehurst, California, a rural town in Yuba County located... read more »

Construction
Endemic Architecture Debuts 3D Printed Homes in Rural California

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing