3D Printing
News Videos Newsletter Contact us
Home / News / Princeton Engineers Develop New 3D Printing Technique for Flexible, Recyclable & Affordable Soft Plastics
qidi

Princeton Engineers Develop New 3D Printing Technique for Flexible, Recyclable & Affordable Soft Plastics

December 16, 2024

Princeton University engineers have developed a new 3D printing technique for producing soft, stretchy plastics with customizable properties. The method, detailed in Advanced Functional Materials, uses low-cost thermoplastic elastomers that cost approximately one cent per gram. The resulting materials can be both flexible and rigid in specific directions, while maintaining recyclability.

Princeton Engineers Develop New 3D Printing Technique for Flexible, Recyclable, and Affordable Soft Plastics
This tiny vase is rigid in one direction and flexes in others. (Image Credit: Princeton University)

The technique relies on controlling nanoscale structures within the material during the printing process. The researchers utilized block copolymers that form stiff cylindrical structures measuring 5-7 nanometers in thickness, embedded within a flexible polymer matrix. These structures can be oriented during printing to create materials with varying degrees of stiffness and flexibility in different directions.

A key feature of the process is thermal annealing, which involves controlled heating and cooling of the printed material. “I think one of the coolest parts of this technique is the many roles that thermal annealing plays— it both drastically improves the properties after printing, and it allows the things we print to be reusable many times and even self-heal if the item gets damaged or broken,” said Alice Fergerson, the study’s lead author.

The research team demonstrated the versatility of their technique by creating various structures, including a small vase and printed text. They also successfully incorporated functional additives, such as light-responsive molecules, without compromising the material’s mechanical properties. The team verified the material’s self-healing capabilities by cutting and rejoining samples through annealing, with the repaired materials showing properties similar to the originals.

The technology shows promise for various applications, including soft robotics, medical devices, prosthetics, protective equipment, and customized shoe soles. The research team plans to explore new architectures suitable for wearable electronics and biomedical devices in their future work.

Source: engineering.princeton.edu

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Scrona Partners with K1 Solution to Distribute EHD Printing Technology in South Korea

Scrona AG has signed a distribution agreement with K1 Solution Co., Ltd. to bring its electrohydrodynamic (EHD) inkjet printing technology to the South... read more »

News

EPFL Researchers Develop Programmable Lattice Structure for Robotics Using Single Foam Material

Researchers at Switzerland's EPFL have created a 3D-printable lattice structure that can mimic different biological tissue properties using a single foam material. The... read more »

Electronics
EPFL Researchers Develop Programmable Lattice Structure for Robotics Using Single Foam Material

Signify Launches 3D-Printed Office Lighting Made from 75% Recycled Materials

Signify has introduced Puzzle, a linear pendant lighting system designed for office environments. The product is available in 4-foot and 5-foot sizes for... read more »

News
Signify Launches 3D-Printed Office Lighting Made from 75% Recycled Materials

Decibel Showcases Large-Scale 3D Printing at Milan Design Week with PORTAL Exhibition

Decibel presented its PORTAL exhibition at Milan's Salone del Mobile 2025, featuring a 15-foot robotic arm that 3D printed furniture pieces daily in... read more »

News
Decibel Showcases Large-Scale 3D Printing at Milan Design Week with PORTAL Exhibition

BMW Group Converts Waste Into New Manufacturing Components

BMW Group has developed a recycling system that converts waste 3D printing powder and used parts into new filament for manufacturing production tools... read more »

Automotive
BMW Group Converts Waste Into New Manufacturing Components

HeyGears Introduces Multi-Material 3D Printed Dentures

HeyGears demonstrated its Multi-Material Fusion resin 3D printed dentures at LMT LAB DAY Chicago 2025. The technology uses Digital Light Processing (DLP) photopolymerization... read more »

Dental
HeyGears Introduces Multi-Material 3D Printed Dentures at Chicago Lab Event

3D Printed Modular Column “Duality of Skin and Core” Featured at Venice Biennale 2025

A 3D printed modular column titled "Duality of Skin and Core" is currently on display at the Venice Biennale 2025 as part of... read more »

Art
3D Printed Modular Column "Duality of Skin and Core" Featured at Venice Biennale 2025

Bentley Unveils EXP 15 Design Concept Featuring 3D Printed Titanium Finishes

Bentley Motors has revealed its EXP 15 concept vehicle at the opening of its new design studio in Crewe. The five-meter concept model... read more »

Automotive
Bentley Unveils EXP 15 Design Concept Featuring 3D Printed Titanium Finishes

COBOD Launches Multifunctional Construction Robot with Shotcrete 3D Printing Capabilities

COBOD International has introduced what it describes as the first commercially available multifunctional construction robot, developed in collaboration with Technische Universität Braunschweig. The... read more »

Construction
COBOD Launches Multifunctional Construction Robot with Shotcrete 3D Printing Capabilities

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing