3D Printing
News Videos Newsletter Contact us
Home / News / Realtime AI-based Keyhole Pore Detection
qidi

Realtime AI-based Keyhole Pore Detection

January 9, 2023

Researchers at University of Virginia have published a paper highlighting their work in the use of machine learning (ML) for the real-time detection of keyhole defects during the LPBF printing of titanium.

Keyhole defects are common in laser welding and LPBF printing processes, and can result in the formation of random pores through the printed material, resulting in a weak and brittle part.

Keyholes

A keyhole defect in metal 3D printing refers to a cavity that forms in the melt pool of the material being printed. This cavity is shaped like a keyhole (hence the name), with a narrow opening at the top and a wider area at the bottom.

Keyhole defects can occur during laser-based 3D printing processes when the laser is operating at a slow speed and high power. Keyhole defects are caused by a variety of factors, including the properties of the material being printed, the laser parameters being used, and the design of the 3D printing setup. You can read our previous article on keyhole formation here.

The team, consisting of researchers from University of Virginia, Carnegie Mellon University, and the University of Wisconsin-Madison used simultaneous high-speed operando synchrotron x-ray imaging and thermal imaging, along with multiphysics simulations, to discover two types of keyhole oscillation in laser powder bed fusion of Ti-6Al-4V.

They then utilized machine learning to further amplify their understanding of this phenomenon and developed an approach for detecting the stochastic (random) keyhole porosity generation events with sub-millisecond temporal resolution and a near-perfect prediction rate.

You can see one of the ML-aided parts in the image below.

keyhole-free metal printing
Reliable, keyhole-free metal printing. (Image credit: Sun et al.)

The operando x-ray imaging provided highly accurate data labeling, enabling the researchers to demonstrate a practical and straightforward method for implementing their approach in commercial systems.

Accelerating Widespread Adoption

This approach was developed to detect the exact moment when a keyhole pore forms during the printing process, which they succeeded in achieving.

“By integrating operando synchrotron X-ray imaging, near-infrared imaging, and machine learning, our approach can capture the unique thermal signature associated with keyhole pore generation with sub-millisecond temporal resolution and 100% prediction rate,” said Tao Sun, associate professor of materials science and engineering at the University of Virginia.

The porosity resulting from keyhole formation has been seen as a hurdle in the widespread adoption of large scale metal additive manufacturing, especially in industries requiring a high level of quality and reliability in their parts. It is difficult to detect using typical sensors as the defect formation occurs randomly beneath the surface.

“Our findings not only advance additive manufacturing research, but they can also practically serve to expand the commercial use of LPBF for metal parts manufacturing,” said Anthony Rollett, co-director of the NextManufacturing Center at CMU.

You can read more in the paper titled “Machine learning–aided real-time detection of keyhole pore generation in laser powder bed fusion”, published in Science, which is available at this link.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Humtown drives US Manufacturing Comeback with Additive Sand Casting

Humtown Products, an Ohio-based company, is positioning itself to serve manufacturers looking to bring production back to the United States. The company specializes... read more »

News
Humtown drives US Manufacturing Comeback with Additive Sand Casting

Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Oak Ridge National Laboratory has released a comprehensive dataset for its Peregrine software, which monitors and analyzes parts created through powder bed additive... read more »

News
Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Creality Expands Flagship Lineup with K2 and K2 Pro 3D Printers

Creality has announced the launch of the K2 and K2 Pro, two new additions to its high-end K series. Built on a rigid... read more »

3D Printers
Creality Expands Flagship Lineup with K2 and K2 Pro 3D Printers

Farsoon and Stark Future Complete KLINGA Project, Producing Over 1,000 Titanium Parts

Farsoon Europe GmbH and Stark Future have completed the KLINGA Project, a collaborative engineering initiative that produced more than 1,000 titanium parts using... read more »

3D Printing Metal
Farsoon and Stark Future Complete KLINGA Project, Producing Over 1,000 Titanium Parts

Swiss Steel Group’s Ugitech Introduces Custom Wire for 3D Metal Printing

Swiss Steel Group and its French subsidiary Ugitech have launched UGIWAM wire, a new product designed for wire arc additive manufacturing (WAAM). The... read more »

3D Printing Metal
Swiss Steel Group's Ugitech Introduces Custom Wire for 3D Metal Printing

QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

QIDI Tech has introduced the QIDI Q2, a compact, beginner-friendly desktop 3D printer engineered to bring professional-grade capabilities into the home. Designed as... read more »

3D Printers
QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

Purdue University's Composites Manufacturing and Simulation Center has partnered with Thermwood to combine predictive simulation technology with large-scale 3D printing for composite parts... read more »

News
Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Daniel Rau, an assistant professor of mechanical engineering at the University of Wyoming, has received a $198,932 grant from the National Science Foundation... read more »

Materials
University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Researchers led by Mejia et al. have developed a real-time monitoring and control system for direct ink write (DIW) 3D printing of thermosetting... read more »

Materials
Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Central Saint Martins Graduate Creates 3D Printed Tennis Balls

Central Saint Martins graduate Noé Chouraqui has developed Point, a 3D-printed tennis ball made from bio-based, recyclable filament. The balls maintain the traditional... read more »

News
Central Saint Martins Graduate Creates 3D Printed Tennis Balls

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing