3D Printing
News Videos Newsletter Contact us
Home / News / Researchers 3D Print Composites with Thermoset Matrix
revopoint

Researchers 3D Print Composites with Thermoset Matrix

September 21, 2020

Carbon fiber reinforced polymer (CFRP) composites are great. As long as they are made with continuous fibers.

When you start chopping these carbon fibers up and mixing them with a thermoplastic base, most of the benefits of a CFRP structure are lost. In the case of chopped fiber filament, the fiber is no longer carrying the load..the weaker polymer matrix is. The carbon fiber is effectively just filler.

So any new method of 3D printing with continuous carbon fibers is of interest to us. If you’re going to print with carbon fiber, may as well reap all the benefits – not just the finish.

This new method devised by a research team at the University of Delaware has demonstrated a method for using a thermoset polymer matrix for their 3D printed composites, as opposed to previous composite printers which have generally used thermoplastic polymer as a matrix.

LITA
LITA at work, injecting resin and extruding carbon fiber. Image credit: Matter/University of Delaware

What is the difference between thermoset and thermoplastic, and why is it significant? We will tell you.

Thermoset vs Thermoplastic

For the benefit of this post, all we need to know is that a thermoplastic (such as ABS) when heated, will melt. And when it cools, it will harden. This cycle can be repeated over and over, and the polymer can be remelted and reformed many times without any physical changes occurring to the material.

A thermoset plastic, in basic terms, will permanently set into a solid when it cools. It is not reversible.

Some CFRP applications are fine with thermoplastics. Others, which may be exposed to a higher range of temperatures (aerospace), may require a polymer matrix that won’t melt when it heats up, so they opt for thermoset CFRP systems. Thermosets also have good resistance to fatigue, which is also attractive in aerospace applications (and also sporting goods).

Currently, 95% of aerospace CFRP components use thermoset pre-pregs…so you can see that there may be a demand for thermoset printing in that market.

Continuous Thermoset Printing

The research team from the Center for Composite Materials (CCM) at University of Delaware recognizes this need for thermoset CFRP printing, and so has developed their Localized In-plane Thermal Assisted 3D printing system (a.k.a “LITA”). It uses a unique printing head and automated robot arm. With this system the team is able to guide the fibers into the required shape, and guide the flow of the liquid polymer by manipulating the temperature of the fibers with a Joule heater. This allows the thermoset resin to flow and wick into the channels between the fibers, before curing to create strong, thermally stable 3D structures.

RAM mega thermoset 3D printer
Related Story
RAM System Allows Large-Scale Thermoset 3D Printing

The team has published a paper on their method, titled “Dynamic Capillary-Driven Additive Manufacturing of Continuous Carbon Fiber Composite” which should give you some indication of the mechanism at work here.

In technical terms, according to the paper:

“The underlying concept of the LITA technique is based on a continuous capillary effect or wicking,which is enabled by a moving thermal gradient along the carbon fiber surfaces, to facilitate the flow of liquid polymer into the tube-like space between neighboring carbon fibers followed by curing of the polymer resin from the heated fiber surfaces to the surrounding space.”

Traditionally fabricated CFRP composites require many hours of post curing. The controlled rapid-curing of the LITA system does not, and therefore there are huge energy savings made by use of this system.

In addition, traditional CFRP is thus-far limited in terms of the geometries allowed by the process. This process, if developed further, may find usage in aerospace, automotive, sports goods, or any other industry that requires light, stiff, fatigue-resistant components that won’t melt during operations.

Download Paper
Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

FRCE Innovation Lab Creates Rapid Solution for F-35 Fleet

Fleet Readiness Center East (FRCE) has produced 2,000 O-ring installation tools for F-35 Lightning II aircraft using 3D printing technology. The project was... read more »

Military
FRCE Innovation Lab Creates Rapid Solution for F-35 Fleet

Etsy’s New 3D Printing Restrictions: What Sellers Need to Know

Etsy has recently updated its policy regarding items in the "Made by a Seller" category, specifically clarifying rules for products created with "computerized... read more »

News

New 3D-Printing Technique Creates Dual-Material Objects from Single Resin

Researchers have developed a new Vat photopolymerization technique that creates both permanent objects and dissolvable supports in a single process. According to a... read more »

Materials
New 3D-Printing Technique Creates Dual-Material Objects from Single Resin

Northumbria Receives EU Funding for Sustainable 3D-Printed Construction Research

Northumbria University has received a Marie Skłodowska-Curie Actions (MSCA) Fellowship worth over a quarter million euros to research low-carbon, 3D-printed construction materials. The... read more »

Construction
Northumbria Receives EU Funding for Sustainable 3D-Printed Construction Research

3D-Printed Sports Bra Could Help Olympic Star Break Historic Athletics Record

Nike has developed a new 3D-printed sports bra called the FlyWeb Bra for runner Faith Kipyegon's attempt to break the 4-minute mile barrier.... read more »

News
3D-Printed Sports Bra Could Help Olympic Star Break Historic Athletics Record

Vietnam Emerges in High-Tech Medicine as Vinmec Pioneers 3D-Printed Breakthroughs

Across pediatric, adult, and geriatric cases, Vietnam’s Vinmec Healthcare System's implementation of 3D printing solutions has significantly transformed patient outcomes, replacing disability with... read more »

Medical
Vietnam Emerges in High-Tech Medicine as Vinmec Pioneers 3D-Printed Breakthroughs

Johns Hopkins APL Helps Navy Overcome Metal 3D Printing Reliability Concerns

Researchers at the Johns Hopkins Applied Physics Laboratory (APL) are working with the Naval Sea Systems Command (NAVSEA) to address reliability concerns with... read more »

3D Printing Metal
Johns Hopkins APL Helps Navy Overcome Metal 3D Printing Reliability Concerns

New 3D Printing Technique Creates Glass Objects at Low Temperatures

Researchers at MIT Lincoln Laboratory have developed a new low-temperature process for 3D printing glass objects. This method creates complex glass structures without... read more »

News
New 3D Printing Technique Creates Glass Objects at Low Temperatures

Farsoon Launches High-Volume Copper Alloy 3D Printing System FS621M-Cu

Farsoon has developed a specialized 3D printing system for producing large copper alloy components for aerospace applications. The company's new FS621M-Cu system, built... read more »

3D Printing Metal
Farsoon Launches High-Volume Copper Alloy 3D Printing System FS621M-Cu

Pratt & Whitney Tests 3D Printed Rotating Part for TJ150 Engine

Pratt & Whitney has completed a series of tests on its 3D printed TJ150 turbine wheel. The company, an RTX business, reports the... read more »

Aerospace
Pratt & Whitney Tests 3D Printed Rotating Part for TJ150 Engine

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing