3D Printing
News Videos Newsletter Contact us
Home / News / Researchers 3D Print Glass Sensors on Optical Fibers
revopoint

Researchers 3D Print Glass Sensors on Optical Fibers

May 19, 2024

Researchers at KTH Royal Institute of Technology in Stockholm have developed an advanced method to 3D print silica glass sensors directly onto optical fiber tips. This technique circumvents the need for high-temperature treatments, which can compromise the integrity of temperature-sensitive fiber coatings.

Published in the journal ACS Nano, the research showcases the ability to create highly resilient glass sensors that significantly outperform traditional plastic-based sensors. These sensors, integrated onto fiber tips, can measure the concentration of organic solvents—a challenging task for polymer-based sensors due to the corrosiveness of these solvents.

The sensors are exceptionally small, with more than 1,000 fitting on the surface area of a single grain of sand. This size reduction opens new possibilities for applications in environmental monitoring and healthcare. Additionally, the researchers successfully demonstrated the printing of nanogratings, which are ultra-small patterns etched onto surfaces at the nanometer scale. These structures are used to manipulate light with high precision and hold potential for advancements in quantum communication.

Researchers 3D Print Glass Sensors on Optical Fibers
Microscopic image of a printed glass demonstration structure on tip of optical fiber. (Image Credit: KTH Royal Institute of Technology)

The ability to 3D print complex and arbitrary glass structures directly on fiber tips is poised to drive significant advancements in microfluidic devices, MEMS accelerometers, and fiber-integrated quantum emitters. Professor Kristinn Gylfason emphasized that this technique bridges the gap between 3D printing and photonics, presenting extensive possibilities for future technological developments across various fields.

By enabling the direct integration of silica glass optical devices with optical fibers, this method enhances sensor resilience and precision, offering robust performance in challenging environments. The implications for production in pharmaceuticals and chemicals, along with environmental and healthcare monitoring, are substantial and far-reaching.

You can read the research paper, titled “3D Printing of Glass Micro-Optics with Subwavelength Features on Optical Fiber Tips” at this link.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

University of Bristol Researchers are Testing 3D-Printed Structures for Earthquake Resistance

University of Bristol researchers are testing 3D-printed structures for earthquake resistance using a specialized shaking table. The experiment, conducted at the university's Soil... read more »

Construction
University of Bristol Researchers are Testing 3D-Printed Structures for Earthquake Resistance

3D Printing Technology Tested on Historic Bridge in Great Barrington as Potential Solution for Aging Infrastructure

Researchers from UMass Amherst and MIT have successfully applied 3D printing technology to repair a bridge in Great Barrington, Massachusetts. The test utilized... read more »

3D Printing Metal
3D Printing Technology Tested on Historic Bridge in Great Barrington as Potential Solution for Aging Infrastructure

Neighborhood 91 Advances Additive Manufacturing Hub Initiative

The Pittsburgh region is strengthening its position in advanced manufacturing with the development of Neighborhood 91 (N91), an additive manufacturing campus adjacent to... read more »

News
Neighborhood 91 Advances Additive Manufacturing Hub Initiative

Sakuu Receives Fast Company Award for Dry Electrode Printing Technology

Sakuu has been named a winner in Fast Company's 2025 World Changing Ideas Awards for its Kavian dry electrode printing process. The company's... read more »

Electronics
Sakuu Receives Fast Company Award for Dry Electrode Printing Technology

Vietnam Sets Global Record with 3D-Printed Femur for 8-Year-Old Cancer Patient

Vinmec Healthcare System in Vietnam has achieved a medical milestone by successfully implanting the world's first fully 3D-printed titanium femur in an eight-year-old... read more »

Medical
Vietnam Sets Global Record with 3D-Printed Femur for 8-Year-Old Cancer Patient

Qatar Launches World’s Largest 3D-Printed Construction Project to Build New Schools

Qatar has begun construction on two large 3D-printed schools as part of a broader project to build 14 new educational facilities. Each 3D-printed... read more »

Construction
Qatar Launches World's Largest 3D-Printed Construction Project to Build New Schools

Stanford Researchers Develop New Method for 3D Printing Complex Vascular Networks

Stanford University researchers have created a computational platform that designs and 3D prints complex vascular networks needed for bioprinted organs. The system, published... read more »

Bioprinting
Stanford Researchers Develop New Method for 3D Printing Complex Vascular Networks

Rocket Lab Reserves Two Ultra Large-Format Metal 3D Printers from Nikon SLM Solutions

Rocket Lab has signed a Memorandum of Understanding with Nikon SLM Solutions to reserve two upcoming ultra-large format metal additive manufacturing systems. The... read more »

3D Printing Metal
Rocket Lab Reserves Two Ultra Large-Format Metal 3D Printers from Nikon SLM Solutions

3D-Printed Clay Bug Hotel Provides Sustainable Habitat for Insects

French artist and designer Raphaël Emine has created a new project called "Les Utopies Entomologiques" (Entomological Utopias) that combines art with environmental conservation.... read more »

Environmental
3D-Printed Clay Bug Hotel Provides Sustainable Habitat for Insects

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing