3D Printing
News Videos Newsletter Contact us
Home / News / Researchers 3D Print Ultra-Strong Deformable Aluminum Alloy
revopoint

Researchers 3D Print Ultra-Strong Deformable Aluminum Alloy

June 18, 2024

High-strength aluminum alloys are prone to hot cracking during additive manufacturing, limiting their applications. Researchers in the US have been exploring the use of selective laser melting (SLM) to produce an ultra-strong, deformable aluminum alloy strengthened with nanoscale intermetallics. The alloy, composed of Al92Ti2Fe2Co2Ni2, demonstrates significant improvements in mechanical properties.

Researchers 3D Print Ultra-Strong Deformable Aluminum Alloy
Back scattered scanning electron microscopy (SEM) images showing overview microstructure of the as-printed Al92Ti2Fe2Co2Ni2 alloy with 300 W laser. (Image Credit: Shang et. al)

The microstructural analysis reveals that the alloy consists of colonies of nanoscale intermetallic lamellae forming rosettes. These rosettes, which vary in thickness across different regions of the melt pool, contribute to the alloy’s high strength exceeding 700 MPa. The fine rosettes near the melt pool boundaries, composed predominantly of Al3Ti and Al9(Fe,Co,Ni)2, are critical to enhancing the mechanical properties.

High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive X-ray spectroscopy (EDS) show that fine rosettes have an Al3Ti core with alternating layers of Al3Ti and Al9(Fe,Co,Ni)2. The coarse rosettes in the melt pool center contain thicker intermetallic layers and cellular precipitates enriched in Al9(Fe,Co,Ni)2.

Atom probe tomography (APT) analyses indicate that transition metals (TMs) are well-distributed within the matrix, with concentrations exceeding their equilibrium solid solubility due to rapid solidification. This microstructural arrangement results in a significant back stress, contributing to the alloy’s high strength and deformability.

In summary, the introduction of nanoscale intermetallics in aluminum alloys via SLM presents a promising approach to achieving ultra-strong and deformable materials suitable for high-performance applications.

You can read the full research paper, titled “Additive manufacturing of an ultrastrong, deformable Al alloy with nanoscale intermetallics” over at this link.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Deep Learning Approach Identifies 3D Printing Sources from Photographs

Researchers from the University of Illinois Urbana-Champaign have developed a new method for identifying the source of 3D printed parts using high-resolution photography... read more »

News
Deep Learning Approach Identifies 3D Printing Sources from Photographs

CEAD to Open Facility for 3D Printed Vessels in The Netherlands

Dutch company CEAD is establishing a new manufacturing facility near its headquarters in Delft. The 2,300-square-meter space will function as a maritime application... read more »

News
CEAD to Open Facility for 3D Printed Vessels in The Netherlands

Fabric8Labs and Wiwynn to Demonstrate ECAM Cold Plate Technology at Computex 2025

Fabric8Labs and Wiwynn have announced a collaboration to showcase advanced cold plates for AI data centers at Computex 2025. The partnership combines Fabric8Labs'... read more »

News
Fabric8Labs and Wiwynn to Demonstrate ECAM Cold Plate Technology at Computex 2025

Stratasys Acquires Key Assets of Forward AM

Stratasys has acquired the key assets and operations of Forward AM, establishing a new standalone company within Stratasys called Mass Additive Manufacturing GmbH.... read more »

News
Stratasys Acquires Key Assets and Operations of Forward AM

Chinese Student’s Custom 3D Printed Drone Sets New Speed Record

A microdrone designed by Chinese student Xu Yang has established a new Guinness World Record, reaching a speed of 340.78 km/h (211.75 mph).... read more »

Aerospace
Chinese Student's Custom 3D Printed Drone Sets New Speed Record

Texas Fisherman Catches Bass Using 3D Printed Duckling Brood Lures

Texas angler Goya Lin has successfully developed a 3D-printed bass lure that resembles a string of ducklings. Lin, who combines mechanical engineering knowledge... read more »

News
Texas Fisherman Catches Bass Using 3D Printed Duckling Brood Lures

3D Printed Self-Watering Planters by Posie Pots

Engineer Kay Wells has developed Posie Pots, a line of 3D-printed self-watering planters that require watering just once a month. The innovative planters... read more »

Environmental
3D Printed Self-Watering Planters by Posie Pots

Virginia Tech Design Team Develops Automated 3D Printer Plate Swapper for Continuous Printing

A student engineering team at VT CRO has created an automated plate swapping system for 3D printers that significantly reduces downtime between print... read more »

News
Virginia Tech Design Team Develops Automated 3D Printer Plate Swapper for Continuous Printing

Fabric8Labs Partners with AEWIN to Deploy ECAM Technology for Thermal Management Solutions

Fabric8Labs has partnered with AEWIN Technologies to develop thermal management solutions for Edge AI systems. The collaboration will utilize Fabric8Labs' Electrochemical Additive Manufacturing... read more »

News
Fabric8Labs Partners with AEWIN to Deploy ECAM Technology for Thermal Management Solutions

3D Printing Breakthrough Enables Multi-Directional Collagen Tissue Fabrication

Researchers at YOKOHAMA National University (YNU) have developed a new method for fabricating complex oriented tissues using fluidic devices and 3D printing. The... read more »

Bioprinting
3D Printing Breakthrough Enables Multi-Directional Collagen Tissue Fabrication

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing