3D Printing
News Videos Newsletter Contact us
Home / News / Researchers Analyse Polymers Using Atomic Force Microscopy
qidi

Researchers Analyse Polymers Using Atomic Force Microscopy

October 23, 2018

Despite its increasing popularity, there are still many areas of 3D printing that raise quite a few queries. Most pertinent of these is how to precisely map the way in which photopolymers behave on a microscale while processing. For example, mechanical and flow properties during curing on the single voxel scale are still a mystery. So now, a National Institute of Standards and Technology (NIST) are leveraging atomic force microscopy to gain insight into the structure and properties of photopolymers during processing.

The team are particularly looking to the sample-coupled-resonance photorheology (SCRPR) technique to shed light on some important properties. With this they will measure the voxel-scale changes in real time and potentially improve DLP, SLA and other photosensitive processes. Due to how slicing software build parts as thin layers, reconstructing them in 3D before printing, the physical material’s bulk properties lose similarity to those of the 3D printed parts. As a result, printing conditions, more than anything else, determine the abilities of the parts.

Measuring Material Properties

Researchers Analyse Polymers Using Atomic Force Microscopy

Atomic force microscopy uses a probe to measure changes at the submicrometer spatial resolution and submillisecond time resolution. The process also uses a photodiode to detect changes in light patterns. During photo-polymerisation, These changes add up and change the bulk material properties. These changes can be things like variations in light intensity or the reactive molecule diffusion. Atomic force microscopy can sense rapid, minute changes in surfaces and resin pools. The researchers even adapted the commercial AFM device to use an ultraviolet laser to initiate the polymerisation at or near the point where the AFM probe contacts the sample.

Although the research focusses on polymers and resins, it also has applications in biogels and hydrogels. The method does, after all, combine AFM with stereolithography. The use of light to pattern photoreactive materials ranging from hydrogels to reinforced acrylics gives it massive range in those other areas as well. The researchers are measuring the resonance frequency (frequency of maximum vibration) and quality factor (an indicator of energy dissipation) when it comes to the AFM probe.

Once they compile the data, the researchers will apply mathematical models and map them to each stage of the process. They can further extrapolate various qualities in relation to the process such as stiffness or dampness. The researchers conducted the tests on two materials. The first was a polymer film transformed by light from a rubber into a glass. The second material was a commercial 3D-printing resin that solidified in 12 milliseconds. The first material confirmed that exposure power and time and were complex, requiring fast, high-resolution measurements. The second confirmed that rises in resonance frequency seemed to signal polymerization and increased elasticity of the resin.

Featured image courtesy of NIST.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Singapore Startup Creates Limited Edition 3D-Printed Collectibles from Recycled Plastic Bottles

Singapore-based startup Unigons has launched a limited collection of 3D-printed Merlion figurines made from recycled plastic bottles. The company produced 60 pieces of... read more »

News
Singapore Startup Creates Limited Edition 3D-Printed Collectibles from Recycled Plastic Bottles

Designer Uses Robotic 3D Printing to Create Dual-Purpose Dog Furniture

Designer Liam de la Bedoyere has developed the Dog Hut Side Table, a piece of furniture that combines a resting space for dogs... read more »

News
Designer Uses Robotic 3D Printing to Create Dual-Purpose Dog Furniture

Scientists 3D Print Solar-Powered Sponge for Seawater Desalination

Researchers have developed a 3D-printed aerogel material that uses sunlight to convert seawater into drinking water. The sponge-like structure contains microscopic vertical channels... read more »

News

Revopoint Launches Major Prime Event 2025 Sale with Up to 40% Off 3D Scanners and Accessories

Revopoint is kicking off its Prime Event 2025 with a series of major discounts on its range of professional 3D scanners and accessories.... read more »

News

Turkish Companies Test 3D Printed Component for Armored Vehicles

MetalWorm and Nurol Makina, both based in Ankara, Turkey, have completed testing of an armored vehicle component manufactured using Directed Energy Deposition (DED)... read more »

3D Printing Metal
Turkish Companies Test 3D Printed Component for Armored Vehicles

McGill Spinout Uses 3D Bioprinting to Create Tumors for Smarter Cancer Treatments

TissueTinker, a McGill University spinout company, has developed 3D bioprinting technology to create miniaturized tumor models for cancer drug testing. The company recently... read more »

Medical
McGill Spinout Uses 3D Bioprinting to Create Tumors for Smarter Cancer Treatments

University of Twente Awarded €13.6M for Research in Circular 3D Printing and Transparent AI

The University of Twente has received €13.6 million in funding from the 2024 NWA ORC program to lead two research projects focused on... read more »

News
University of Twente Awarded €13.6M for Research in Circular 3D Printing and Transparent AI

China’s 3D Printed Micro Turbojet Engine Completes Maiden Flight

The Aero Engine Corporation of China (AECC) has successfully completed the first flight test of its 3D-printed micro turbojet engine in Inner Mongolia... read more »

Aerospace
China's 3D Printed Micro Turbojet Engine Completes Maiden Flight

Laser-Assisted Cold Spray Technology Enhances Material Deposition Process

Researchers at the University of Cambridge's Center for Industrial Photonics have developed a new additive manufacturing technique called laser-assisted cold spray (LACS). The... read more »

3D Printing Metal
Laser-Assisted Cold Spray Technology Enhances Material Deposition Process

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing