3D Printing
News Videos Newsletter Contact us
Home / News / Researchers Building Knowledge Base on AM Waveguides
revopoint

Researchers Building Knowledge Base on AM Waveguides

February 8, 2023

A team of researchers at the Georgia Tech Research Institute are using additive manufacturing techniques to create high-powered RF waveguides with unique structures that are difficult or impossible to make using traditional fabrication processes.

These waveguides direct electromagnetic energy in high-powered millimetre wave and microwave radars and antennas. The researchers are testing two alternative fabrication techniques: 3D printed structures fabricated from metal and 3D-printed polymer components that are metal-coated.

Each has its own advantages and disadvantages and must be chosen for specific applications, with the researchers evaluating their mechanical, thermal, electrical, and RF energy loss performance.

The design of waveguides using traditional methods has been well understood for decades, but the team hopes to contribute to the field by developing AM built versions.

Researchers with 3D printed waveguide components. (Image credit: Sean McNeil)

The researchers have found that while AM induces losses due to surface finish, those losses could be minimized by optimizing the geometry.

“Our effort is focusing on two parallel paths: looking at the mechanical constraints involved with fabrication and the RF limitations,” said Austin Forgey, a research engineer at Georgia Tech.

“We are merging the new experimental data we’re getting with RF simulations, and combining that with testing mechanical properties. That will give us a full design package that can be used by the designers who need it.”

The team expects the flexibility offered by additive techniques to accelerate the iterative development of prototypes and to facilitate designs that might otherwise have been more challenging. They plan to publish their findings to share their knowledge and build a comprehensive design information base for RF applications of additive processes.

Come and let us know your thoughts on our Facebook, Twitter, and LinkedIn pages, and don’t forget to sign up for our weekly additive manufacturing newsletter to get all the latest stories delivered right to your inbox.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

UW-Madison Engineers Develop Enhanced Heat Exchanger Using 3D Printing

Engineers at the University of Wisconsin-Madison have created a heat exchanger with complex internal channels that outperforms traditional designs. The team used topology... read more »

3D Printing Metal
UW-Madison Engineers Develop Enhanced Heat Exchanger Using 3D Printing

U.S. Army Soldiers Apply 3D Printing Training to Solve Field Equipment Issues

Two U.S. Army soldiers recently used skills learned at the Naval Aviation School for Additive Manufacturing (NASAM) to produce critical parts during deployment.... read more »

Military
U.S. Army Soldiers Apply 3D Printing Training to Solve Field Equipment Issues

Architect Wins Dezeen Competition with Wave-like 3D Printed Installation

Architect Arthur Mamou-Mani has won the Shaping Water Competition with his installation "Harmonic Tides," which will be built at Clerkenwell Design Week this... read more »

Construction
Architect Wins Competition with Wave-like 3D Printed Installation

Philips Debuts 3D Printable Components for Product Repair

Philips has introduced "Philips Fixables," a new initiative offering free 3D printable replacement components for select products. The program currently features just one... read more »

News
Philips Debuts 3D Printable Components for Product Repair

Caltech Team Advances 3D Printing Inside Living Tissue Using Sound Waves

Caltech researchers have developed a new method for 3D printing polymers inside living organisms. The technique, called deep tissue in vivo sound printing... read more »

Bioprinting
Caltech Team Advances 3D Printing Inside Living Tissue Using Sound Waves

AIRSYS Invests $40 Million in New HQ with World’s Largest Liquid Cooling 3D Printing Factory

AIRSYS Cooling Technologies has started construction on its new global headquarters in Woodruff, South Carolina. The $40-million facility will span over 260,000 square... read more »

News
AIRSYS Invests $40 Million in New HQ with World's Largest Liquid Cooling 3D Printing Factory

Mandrill’s Custom Bonneville T120 Street Tracker Reimagines Classic Design

Chinese custom shop Mandrill Garage has transformed a Triumph Bonneville T120 into a street tracker that blends racing aesthetics with practical functionality. The... read more »

Automotive
Mandrill's Custom Bonneville T120 Street Tracker Reimagines Classic Design

Design Lab Invents Modular, Fully 3D Printed Wheelchair for Kids

MakeGood NOLA has developed a modular, fully 3D-printed wheelchair for children ages 2 to 8. The New Orleans-based adaptive design lab created the... read more »

News

Donkervoort’s New P24 RS Supercar Uses 3D-Printed Intercoolers

Conflux Technology, an Australian company specializing in heat exchangers, has created a 3D-printed intercooler for Donkervoort's upcoming P24 RS supercar. The metal 3D-printed... read more »

Automotive
Donkervoort's New P24 RS Supercar Uses 3D-Printed Intercoolers

3D Printed Concrete Bus Stop Creates Sculptural Shelter in Slovakia

A new 3D-printed concrete bus stop has been installed in Bratislava, Slovakia, as part of urban development in the growing Čerešne district. The... read more »

Construction
3D Printed Concrete Bus Stop Creates Sculptural Shelter in Slovakia

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing