3D Printing
News Videos Newsletter Contact us
Home / News / Researchers Create Bio-based Printed Shapeshifting Structures
qidi

Researchers Create Bio-based Printed Shapeshifting Structures

March 5, 2023

Researchers from the University of Stuttgart have been experimenting with hygromorphic smart structures as passive systems for generating movement in various applications. Hygromorphic means that they change shape when the structures come into contact with water, or in this case, when the humidity changes in the environment.

Read on for more information.

Humidity Responsive

Generally, material limitations hinder the reliability and repeatability of humidity-responsive actuation. The authors of the paper have proposed a codesign method for 4D printing hygromorphic structures using biobased cellulose-filled filaments with varying stiffness and hygroresponsiveness, and have designed mesoscale structuring in printed elements.

The research team successfully designed, fabricated, and tested 4D printed prototypes that can transform in response to relative humidity, with fast, reversible, and repeatable motion in numerous cycles.

The structures were able to alter their shape within a matter of minutes, in conditions of 35–90% relative humidity (RH), which corresponds to naturally occurring shifts in RH in daily and seasonal weather cycles. This means that the structures can actuate when the weather changes, which can be beneficial for providing shade or shelter for building inhabitants when the weather changes.

You can see one of the printed structures in the image below. The graphic shows the petals of the structure opening as the RH is stepped up over time.

The aperture opens and closes with cycling RH
The aperture opens and closes with cycling RH, showing the reversible nature of this mechanism. (Image credit: University of Stuttgart)

For the 4D structures, the research team produced biocomposite filament materials by compounding native cellulose powder and two partially biobased thermoplastic matrix polymers.

The three-step process involved drying the materials, producing granules by compounding, and extruding them into filaments with a constant diameter of 1.75 mm. The dimensional accuracy of the produced filaments was ensured by continuous measurement with a laser micrometer and wiremaster.

You can see a closeup of one of the printed components, its composition, and the actuated part in the image below.

Different materials
Different materials and layers of the structure. (Image credit: University of Stuttgart)

How it Works

The structure works due to a functional bilayer scheme, which consists of a hygroscopic active layer printed with cellulose-filled filaments and a moisture-stable restrictive layer printed with pure polymers. Many readers will know that plastics can be a little hygroscopic, and this normally negative aspect was utilized as a feature in this design work. The plastic matrix in these experiments consisted of PK and TPU polymers.

An optional bonding layer can also be added to hold the restrictive layer between two compatible material layers, preventing global layer delamination. The toolpath design parameters were adjusted to tune the mesostructural anisotropy and porosity to physically program the shape-change in bilayer constructs.

The bending curvature was controlled through variations in the thickness of layers and filling ratio of the restrictive layer.

The researchers conclude that given the fast response time of the actuation, as well as the range of relative humidity that the actuation occurs in, this method can be used to produce 4D-printed smart structures in weather-adaptive architectural building skins. For example, structures made with this method can open in high RH conditions (usually during fall/winter or at nights), and close to provide shading in low RH conditions (usually in the hot summer time).

You can read the full paper, titled “Codesign of Biobased Cellulose-Filled Filaments and Mesostructures for 4D Printing Humidity Responsive Smart Structures” over at this link.

Come and let us know your thoughts on our Facebook, Twitter, and LinkedIn pages, and don’t forget to sign up for our weekly additive manufacturing newsletter to get all the latest stories delivered right to your inbox.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Designer Creates Modular Sneakers with 3D Printed Soles and Climbing Rope Laces

Daniyar Uderbekov, a designer based in Kazakhstan, has developed UDRB, a pair of modular sneakers designed to address environmental concerns in the footwear... read more »

Fashion

Nestlé Expands 3D Printing Operations for Manufacturing Parts Across UK Sites

Nestlé has implemented standardized 3D printing processes across its UK manufacturing facilities over the past year. The company uses a team of three... read more »

News
Nestlé Expands 3D Printing Operations for Manufacturing Parts Across UK Sites

Cornell Researchers Develop 3D Printing Method for Enhanced Superconductors

Cornell University researchers have developed a one-step 3D printing method that produces superconductors with improved properties. The research, published August 19 in Nature... read more »

News
Cornell Researchers Develop 3D Printing Method for Enhanced Superconductors

Scottish Maritime Project Shows Promise for 3D Printed Ship Components

A Scottish project using large-scale additive manufacturing for shipbuilding components has completed its second phase, demonstrating potential benefits for the maritime industry. The... read more »

News
Scottish Maritime Project Shows Promise for 3D Printed Ship Components

Navy Maintenance Center Uses 3D Printing to Replace Destroyer Pump Component at Fraction of Conventional Cost

The Southeast Regional Maintenance Center (SERMC) has successfully used 3D printing to manufacture a replacement cooling rotor for an Arleigh Burke-class guided missile... read more »

Military
Navy Maintenance Center Uses 3D Printing to Replace Destroyer Pump Component at Fraction of Conventional Cost

Rapid Fusion Launches AI Assistant for Large-Format 3D Printers

British manufacturer Rapid Fusion has introduced "Bob," an AI-powered assistant designed to optimize operations for its large-format 3D printing systems. The company developed... read more »

News
Rapid Fusion Launches AI Assistant for Large-Format 3D Printers

Creality Submits IPO Prospectus for Hong Kong Stock Exchange Listing

Shenzhen-based 3D printer manufacturer Creality has submitted a prospectus to the Hong Kong Stock Exchange for a main board listing. The company began... read more »

News
Creality Submits IPO Prospectus for Hong Kong Stock Exchange Listing

Graphjet Technology Partners with Malaysian University on 3D-Printed Heat Sink Development

Graphjet Technology has entered into a collaboration agreement with the Centre for Materials Engineering and Smart Manufacturing (MERCU) at Universiti Kebangsaan Malaysia (UKM).... read more »

News
Graphjet Technology Partners with Malaysian University on 3D-Printed Heat Sink Development

Humtown drives US Manufacturing Comeback with Additive Sand Casting

Humtown Products, an Ohio-based company, is positioning itself to serve manufacturers looking to bring production back to the United States. The company specializes... read more »

News
Humtown drives US Manufacturing Comeback with Additive Sand Casting

Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Oak Ridge National Laboratory has released a comprehensive dataset for its Peregrine software, which monitors and analyzes parts created through powder bed additive... read more »

News
Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing