3D Printing
News Videos Newsletter Contact us
Home / News / Researchers Create New Method for 3D Printing Bridge
qidi

Researchers Create New Method for 3D Printing Bridge

December 7, 2023

Researchers from institutes in Germany and the Netherlands have been working on a method of creating complex geometries in construction. The end result has been demonstrated in the construction of a pedestrian bridge which was made by merging two digital construction technologies, namely CNC-knitted textile formwork, and shotcrete 3D printing (SC3DP). Read on for more information about the research.

CNC-Knitted Textile Formwork

The traditional challenge in constructing complex geometries lies in the cumbersome, labor-intensive process of creating formwork, particularly with materials like concrete. This project has introduced a novel approach using CNC-knitted textiles as formwork. This method not only significantly reduces manual labor but also allows for the creation of intricate, double-curved forms with ease. The textiles, precisely knitted by CNC machines, can incorporate various fibers and design features like channels and openings, custom-tailored to the project’s needs.

Foundation placement
Left to right: Foundation placement, Bending active steel rods, Spanning of 3D-knitted formwork, Robotic Shotcrete. (Image Credit: Rennen et al.)

Shotcrete 3D Printing (SC3DP)

Despite the advancements in textile formwork, the concrete application remained a challenge until the advent of SC3DP. This technique, developed at TU Braunschweig, automates the process of applying concrete. It involves spraying a fine grain concrete or cement paste through a high-velocity nozzle, controlled by robotic arms. The precision of this method ensures strong layer bonding and enables varying layer thicknesses and material properties depending on structural requirements.

textile formwork
Spanning of textile formwork (left), assembled substructure with formwork (right). (Image Credit: Rennen et al.)

The SC3DP technique also addresses another critical issue in traditional construction – the labor intensity and skill dependency of manual shotcrete application. By automating this process, the technology ensures consistent quality and finish of the concrete surfaces.

Seamless Integration of Design and Fabrication

A key aspect of this project was the integration of design, material selection, and robotic fabrication. The process began with computational form-finding to determine the most efficient structural shape and thickness distribution. The formwork’s geometry was then precisely replicated in the CNC-knitted textiles.

In the next step, a thin layer of cement paste was robotically applied to the textile formwork, followed by the strategic placement of continuous glass fiber for reinforcement. Finally, the SC3DP process was employed to apply the structural layer of concrete.

Potential Improvements

While the project marks a significant milestone, the researchers have identified areas for improvement. These include refining the stiffening coat spraying process to minimize textile sagging, optimizing the sequence of construction steps, and improving path planning for robotic spraying to enhance precision and efficiency.

Researchers Create New Method for 3D Printing Bridge
Rendered vision of the pedestrian bridge (top), final demonstrator after fabrication (bottom). (Image Credit: Rennen et al.)

By integrating advanced technologies like 3D knitted formwork, robotic shotcrete spraying, and dynamic fiber reinforcement, the robotic knitcrete project marks a transformative leap in the realm of architectural fabrication, demonstrating how the synergy of digital technologies can revolutionize traditional construction methodologies.

It offers a potential glimpse into a future where our buildings are not just constructed but intricately woven and precisely sculpted, reflecting the perfect blend of technology, art, and engineering.
If you would like to read the research paper, titled “Robotic knitcrete: computational design and fabrication of a pedestrian bridge using robotic shotcrete on a 3D-Knitted formwork”, you can do so over at this link.

Come and let us know your thoughts on our Facebook, X, and LinkedIn pages, and don’t forget to sign up for our weekly additive manufacturing newsletter to get all the latest stories delivered right to your inbox.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Singapore Startup Creates Limited Edition 3D-Printed Collectibles from Recycled Plastic Bottles

Singapore-based startup Unigons has launched a limited collection of 3D-printed Merlion figurines made from recycled plastic bottles. The company produced 60 pieces of... read more »

News
Singapore Startup Creates Limited Edition 3D-Printed Collectibles from Recycled Plastic Bottles

Designer Uses Robotic 3D Printing to Create Dual-Purpose Dog Furniture

Designer Liam de la Bedoyere has developed the Dog Hut Side Table, a piece of furniture that combines a resting space for dogs... read more »

News
Designer Uses Robotic 3D Printing to Create Dual-Purpose Dog Furniture

Scientists 3D Print Solar-Powered Sponge for Seawater Desalination

Researchers have developed a 3D-printed aerogel material that uses sunlight to convert seawater into drinking water. The sponge-like structure contains microscopic vertical channels... read more »

News

Revopoint Launches Major Prime Event 2025 Sale with Up to 40% Off 3D Scanners and Accessories

Revopoint is kicking off its Prime Event 2025 with a series of major discounts on its range of professional 3D scanners and accessories.... read more »

News

Turkish Companies Test 3D Printed Component for Armored Vehicles

MetalWorm and Nurol Makina, both based in Ankara, Turkey, have completed testing of an armored vehicle component manufactured using Directed Energy Deposition (DED)... read more »

3D Printing Metal
Turkish Companies Test 3D Printed Component for Armored Vehicles

McGill Spinout Uses 3D Bioprinting to Create Tumors for Smarter Cancer Treatments

TissueTinker, a McGill University spinout company, has developed 3D bioprinting technology to create miniaturized tumor models for cancer drug testing. The company recently... read more »

Medical
McGill Spinout Uses 3D Bioprinting to Create Tumors for Smarter Cancer Treatments

University of Twente Awarded €13.6M for Research in Circular 3D Printing and Transparent AI

The University of Twente has received €13.6 million in funding from the 2024 NWA ORC program to lead two research projects focused on... read more »

News
University of Twente Awarded €13.6M for Research in Circular 3D Printing and Transparent AI

China’s 3D Printed Micro Turbojet Engine Completes Maiden Flight

The Aero Engine Corporation of China (AECC) has successfully completed the first flight test of its 3D-printed micro turbojet engine in Inner Mongolia... read more »

Aerospace
China's 3D Printed Micro Turbojet Engine Completes Maiden Flight

Laser-Assisted Cold Spray Technology Enhances Material Deposition Process

Researchers at the University of Cambridge's Center for Industrial Photonics have developed a new additive manufacturing technique called laser-assisted cold spray (LACS). The... read more »

3D Printing Metal
Laser-Assisted Cold Spray Technology Enhances Material Deposition Process

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing