3D Printing
News Videos Newsletter Contact us
Home / News / Researchers Develop 3D-Printed Robot System Capable of Collective Behavior
qidi

Researchers Develop 3D-Printed Robot System Capable of Collective Behavior

June 11, 2025

Harvard and Seoul National University researchers have created a new soft robotic system called “link-bots” that can perform coordinated movements without embedded power or control systems. The robots consist of 3D-printed centimeter-scale particles connected in V-shaped chains via notched links. When placed on a vibrating surface, the tilted legs of each particle allow the bots to self-propel and demonstrate collective behavior.

Researchers Develop 3D-Printed Robot System Capable of Collective Behavior
Link-bots exhibit collective behavior and can perform a variety of tasks, including transport of objects. (Image Credit: Harvard)

The link-bots represent an alternative approach to traditional swarm robotics, which typically rely on energy-intensive components like sensors and wireless communications. These simple mechanical robots can collectively move forward, stop, change direction, squeeze through gaps, and transport objects. Multiple link-bots can work together to accomplish tasks that would be difficult for a single robot.

“From a physical and computational perspective, the interactions between link-bots are really simple, even though they display what look like very complex behaviors,” said L. Mahadevan, the Lola England de Valpine Professor at Harvard SEAS. “With a large number of these agents, you get a range of emergent behaviors.”

The research team developed a computational model to understand how different link designs and particle counts affect movement. SEAS postdoctoral fellow Kimberly Bowal, who created the model, stated: “It has been exciting to show that physical linking constraints alone can drive programmable, environment-responsive collective behaviors.”

According to the researchers, the principles demonstrated by the link-bots could potentially enable applications from sorting mechanisms to transport of passive objects. Mahadevan described the approach as “the opposite of planned engineering,” highlighting how complex functional behaviors can emerge from simple interactions without centralized control.

The study was published in Science Advances and co-authored by researchers from both Harvard SEAS and Seoul National University’s Department of Mechanical Engineering.

Source: seas.harvard.edu

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Japanese Company 3D Prints House Using Soil-Based Materials

A Japanese company has completed construction of a 3D-printed house using soil-based materials instead of traditional concrete. The Lib Earth House Model B,... read more »

Construction
Japanese Company 3D Prints House Using Soil-Based Materials

Binghamton University Receives $550,000 NSF Grant to Integrate Biobatteries with 3D Printing

Binghamton University Professor Seokheun "Sean" Choi has received a $550,000 grant from the National Science Foundation to develop a manufacturing process that integrates... read more »

News
Binghamton University Receives $550,000 NSF Grant to Integrate Biobatteries with 3D Printing

EU Project Combines AI and Bio-Based Materials for 3D Printing Wind Turbine Components

The EU-funded ORGANIC project is a four-year project aimed at developing 3D printing technology that combines bio-inspired structures with artificial intelligence. Led by... read more »

Environmental
EU Project Combines AI and Bio-Based Materials for 3D Printing Wind Turbine Components

Creality Falcon A1 Pro Set to Launch in August with Smarter, Faster 20W Laser Engraving

Creality Falcon, the laser engraving-focused sub-brand from Creality, is preparing to launch its most advanced desktop engraver to date. The new Falcon A1... read more »

News
Creality Falcon A1 Pro Set to Launch in August with Smarter, Faster 20W Laser Engraving

Scrona Partners with K1 Solution to Distribute EHD Printing Technology in South Korea

Scrona AG has signed a distribution agreement with K1 Solution Co., Ltd. to bring its electrohydrodynamic (EHD) inkjet printing technology to the South... read more »

News

EPFL Researchers Develop Programmable Lattice Structure for Robotics Using Single Foam Material

Researchers at Switzerland's EPFL have created a 3D-printable lattice structure that can mimic different biological tissue properties using a single foam material. The... read more »

Electronics
EPFL Researchers Develop Programmable Lattice Structure for Robotics Using Single Foam Material

Signify Launches 3D-Printed Office Lighting Made from 75% Recycled Materials

Signify has introduced Puzzle, a linear pendant lighting system designed for office environments. The product is available in 4-foot and 5-foot sizes for... read more »

News
Signify Launches 3D-Printed Office Lighting Made from 75% Recycled Materials

Decibel Showcases Large-Scale 3D Printing at Milan Design Week with PORTAL Exhibition

Decibel presented its PORTAL exhibition at Milan's Salone del Mobile 2025, featuring a 15-foot robotic arm that 3D printed furniture pieces daily in... read more »

News
Decibel Showcases Large-Scale 3D Printing at Milan Design Week with PORTAL Exhibition

BMW Group Converts Waste Into New Manufacturing Components

BMW Group has developed a recycling system that converts waste 3D printing powder and used parts into new filament for manufacturing production tools... read more »

Automotive
BMW Group Converts Waste Into New Manufacturing Components

HeyGears Introduces Multi-Material 3D Printed Dentures

HeyGears demonstrated its Multi-Material Fusion resin 3D printed dentures at LMT LAB DAY Chicago 2025. The technology uses Digital Light Processing (DLP) photopolymerization... read more »

Dental
HeyGears Introduces Multi-Material 3D Printed Dentures at Chicago Lab Event

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing