3D Printing
News Videos Newsletter Contact us
Home / News / Researchers in Texas Strengthen 3D Prints With Microwaves
qidi

Researchers in Texas Strengthen 3D Prints With Microwaves

June 22, 2017

One of 3D printing’s core issues is weak interlayer bonding of 3D prints. Now, researchers in Texas have come up with a means of strengthening filament through application of microwave radiation. As a result the prints come out stronger by a factor of 275%.

Related Story
Engineer Reveals Easy Way to Strengthen PLA Through Annealing In Heat Bath

The researchers made changes to the filament so that it could maintain temperatures for longer stretches. The method requires coating the filament with carbon nanotubes to locally induce radiation providing longer heating periods. The researchers have dubbed the method LIRF.

What is LIRF?

Microwave Nanotube Radiation Welding

LIRF stands for Locally Induced Radio Frequency. It uses the heating properties of carbon nanotubes when in reacting to microwave radiation to improve print strength. The researchers coated the filament with multi-walled carbon nanotubes as part of a polymer film. These MWCNTs are positioned at each of the traces and enable smoother adhesion between layers. These responsive heating elements are within the interfaces of the filament at a micro-scale.

The researchers used a carbon nanotube ink to create the outer layer of MWCNTs that adhere to the PLA. The image below shows the bath coating process. The neat filament enters through one end of the bath and comes out the other side fully coated in a layer of carbon nanotubing. Then, it passes through a vacuum for the drying process.

The entire tech is reliant on the precise coating and microwave responsiveness. As a result, factors like the thickness of the coating and the precise MWCNT count has to be accurate and calibrated to take the post-heating state of the tube into account as it gets thinner.

This method, as it is, does imply a few limitations. For example, currently there is a steep limit to the level of thickness that the coat can achieve before it starts to become counterproductive. Similarly, over stuffing the coating with MWCNTs also produces less than desirable results with flow instability.

All in all, the research is very intriguing. It has wide implications for how we think about filament production. It can also give manufacturers a way of achieving better prints without changing the whole material and instead coating it with conductors. We’ll have to wait and see how it develops as further tests are conducted, but so far it looks encouraging.

Polymer Blends Display Enhanced Adhesion in FFF/FDM
Related Story
New Polymer Blends Display Enhanced Interlayer Bonding for FFF/FDM 3D Prints

The full study is available here.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Laser-Assisted Cold Spray Technology Enhances Material Deposition Process

Researchers at the University of Cambridge's Center for Industrial Photonics have developed a new additive manufacturing technique called laser-assisted cold spray (LACS). The... read more »

3D Printing Metal
Laser-Assisted Cold Spray Technology Enhances Material Deposition Process

Titomic Netherlands Secures Strategic Funding to Advance Cold Spray 3D Printing Technology

Titomic Limited, an Australian company specializing in cold spray additive manufacturing, has received €800,000 in funding from the Netherlands' 3D Print Kompas program.... read more »

3D Printing Metal
Titomic Netherlands Secures Strategic Funding to Advance Cold Spray 3D Printing Technology

3D-Printed Insects Help Scientists Map the Limits of Mimicry in Nature

Researchers at the University of Nottingham have developed a method to 3D print life-sized, color-accurate insect models for biological research. The team, led... read more »

Environmental

University of Hong Kong Scientists Explore Growing Organs with 3D Printing Technology

Researchers at the University of Hong Kong (HKU) are working to combine 3D-printed respiratory tissue with lab-grown organoids to create functional airways for... read more »

Bioprinting
University of Hong Kong Scientists Explore Growing Organs with 3D Printing Technology

SHINING 3D Unveils EinScan Rigil with Tri-Mode Scanning for Pro-sumer Flexibility

SHINING 3D has launched its newest flagship 3D scanner, the EinScan Rigil — touted as the world’s first 3D scanner featuring Tri-Mode operation... read more »

News
SHINING 3D Unveils EinScan Rigil with Tri-Mode Scanning for Pro-Level Flexibility

ETH Zurich 3D Prints Recycled Plastic Structure for Swiss Ice Cream Shop

ETH Zurich students have completed a 3D-printed ice cream shop in the Swiss Alpine village of Mulegns. The project, called Gelateria, was designed... read more »

Construction
ETH Zurich 3D Prints Recycled Plastic Structure for Swiss Ice Cream Shop

Hugo Launches 3D Printed Loafers with Zellerfeld

Hugo, the younger brand under Hugo Boss, has partnered with 3D printing company Zellerfeld to create a fully 3D-printed loafer. The shoe is... read more »

Fashion
Hugo Launches 3D Printed Loafers with Zellerfeld

3D Printed Resin Combines Rubber Flexibility with Plastic Strength, Surprising Scientists

Researchers at the University of Texas at Austin have developed a 3D printing method that can create objects with both soft and hard... read more »

News
3D Printed Resin Combines Rubber Flexibility with Plastic Strength, Surprising Scientists

LPE Supports Queen’s Propulsion Laboratory with 3D Printed Rocket Engine Chamber

Students at Queen's University Belfast have developed what they describe as Ireland's first student-built liquid rocket engine. The Kelvin Mk.1, named after Belfast-born... read more »

3D Printing Metal
LPE Supports Queen’s Propulsion Laboratory with 3D Printed Rocket Engine Chamber

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing