3D Printing
News Videos Newsletter Contact us
Home / News / Researchers Print 4D-sensing Thermocouples
qidi

Researchers Print 4D-sensing Thermocouples

May 8, 2023

Researchers from the University of Hong Kong have developed a 3D printed micro-thermoelectric device that allows for four-dimensional (3D Space + Time) thermometry at the microscale, providing a higher spatial resolution of approximately one micrometer.

Thermocouples have proven advantageous for their simple configuration and passive operation, providing minimal sample disturbance. However, there have been challenges in miniaturizing these devices to achieve high spatial resolution thermometry.

Researchers Print 4D-sensing Thermocouples
Thermocouple network. (Image credit: University of Hong Kong)

The introduction of 3D printing in the fabrication of micro-thermoelectric devices has overcome the limitations faced by traditional thermocouples. Fabrication using bi-metal 3D printing in particular can offer a spatial resolution of approximately one micrometer, enabling the exploration of dynamics, such as Joule heating and evaporative cooling, on microscale subjects like microelectrodes and water menisci.

The Printing Process

The device consists of freestanding platinum (Pt) and silver (Ag) microwires forming an electrical junction acting as a temperature probe suspended in air. The temperature at each junction is measured by the thermoelectric voltage generated by the Seebeck effect. The technique enables microscale temperature mapping in three dimensions, offering the possibility of creating a wide range of on-chip, freestanding microsensors or microelectronic devices without the design restrictions of traditional manufacturing processes.

Bi-metallic printed wires
Bi-metallic printed wires of each thermocouple. (Image credit: University of Hong Kong)

The Pt-Ag microwires were with printable inks containing Ag or Pt nanoparticles, and were dispensed through .micropipettes with diameters of ~5 μm.

As the pipette came into contact with the substrate, a femtoliter ink meniscus was produced, and the nanoparticles rapidly accumulated in the meniscus under solvent evaporation, forming a solidified microstructure on a patterned microelectrode.

The meniscus was then guided with a programmed path and speed to produce a freestanding wire, and termination of wire growth was achieved by increasing the pipette moving speed.

The same procedure was then used to fabricate an Ag microwire on a neighboring microelectrode, and guide its growth towards the top of the Pt wire to create the Pt-Ag thermocouple junction. The Tjunctioned were well-formed, and their cross-sectional area was shown to be as small as 0.38 μm2.

4D Thermocouple Uses

As the 4D micro-thermometry technique allows the researchers to measure the temperature of the environment at designated points without any excitation, they were able to study how heat is dissipated to the air at different ambient conditions such as humidity, which is important for understanding various phenomena associated with evaporation and condensation of water in diverse fields.

thermocouple network
Photo of actual printed thermocouple network. (Image credit: University of Hong Kong)

The team observed that the heat dissipation from the Joule-heated microwire to the air becomes faster as relative humidity decreases, leading to lower temperature and slower decay.

This advancement has the potential to revolutionize the field of thermodynamics and thermal management in various applications, from scientific research to everyday life. The newfound capability to directly measure 4D thermometry at the microscale could pave the way for the development of on-chip, freestanding microsensors or microelectronic devices, eliminating design restrictions imposed by manufacturing processes.

You can read the research paper, titled “Additive Manufacturing of Thermoelectric Microdevices for Four-Dimensional Thermometry” in the Advanced Materials journal, at this link.

Come and let us know your thoughts on our Facebook, Twitter, and LinkedIn pages, and don’t forget to sign up for our weekly additive manufacturing newsletter to get all the latest stories delivered right to your inbox.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Scottish Maritime Project Shows Promise for 3D Printed Ship Components

A Scottish project using large-scale additive manufacturing for shipbuilding components has completed its second phase, demonstrating potential benefits for the maritime industry. The... read more »

News
Scottish Maritime Project Shows Promise for 3D Printed Ship Components

Navy Maintenance Center Uses 3D Printing to Replace Destroyer Pump Component at Fraction of Conventional Cost

The Southeast Regional Maintenance Center (SERMC) has successfully used 3D printing to manufacture a replacement cooling rotor for an Arleigh Burke-class guided missile... read more »

Military
Navy Maintenance Center Uses 3D Printing to Replace Destroyer Pump Component at Fraction of Conventional Cost

Rapid Fusion Launches AI Assistant for Large-Format 3D Printers

British manufacturer Rapid Fusion has introduced "Bob," an AI-powered assistant designed to optimize operations for its large-format 3D printing systems. The company developed... read more »

News
Rapid Fusion Launches AI Assistant for Large-Format 3D Printers

Creality Submits IPO Prospectus for Hong Kong Stock Exchange Listing

Shenzhen-based 3D printer manufacturer Creality has submitted a prospectus to the Hong Kong Stock Exchange for a main board listing. The company began... read more »

News
Creality Submits IPO Prospectus for Hong Kong Stock Exchange Listing

Graphjet Technology Partners with Malaysian University on 3D-Printed Heat Sink Development

Graphjet Technology has entered into a collaboration agreement with the Centre for Materials Engineering and Smart Manufacturing (MERCU) at Universiti Kebangsaan Malaysia (UKM).... read more »

News
Graphjet Technology Partners with Malaysian University on 3D-Printed Heat Sink Development

Humtown drives US Manufacturing Comeback with Additive Sand Casting

Humtown Products, an Ohio-based company, is positioning itself to serve manufacturers looking to bring production back to the United States. The company specializes... read more »

News
Humtown drives US Manufacturing Comeback with Additive Sand Casting

Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Oak Ridge National Laboratory has released a comprehensive dataset for its Peregrine software, which monitors and analyzes parts created through powder bed additive... read more »

News
Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Creality Expands Flagship Lineup with K2 and K2 Pro 3D Printers

Creality has announced the launch of the K2 and K2 Pro, two new additions to its high-end K series. Built on a rigid... read more »

3D Printers
Creality Expands Flagship Lineup with K2 and K2 Pro 3D Printers

Farsoon and Stark Future Complete KLINGA Project, Producing Over 1,000 Titanium Parts

Farsoon Europe GmbH and Stark Future have completed the KLINGA Project, a collaborative engineering initiative that produced more than 1,000 titanium parts using... read more »

3D Printing Metal
Farsoon and Stark Future Complete KLINGA Project, Producing Over 1,000 Titanium Parts

Swiss Steel Group’s Ugitech Introduces Custom Wire for 3D Metal Printing

Swiss Steel Group and its French subsidiary Ugitech have launched UGIWAM wire, a new product designed for wire arc additive manufacturing (WAAM). The... read more »

3D Printing Metal
Swiss Steel Group's Ugitech Introduces Custom Wire for 3D Metal Printing

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing