3D Printing
News Videos Newsletter Contact us
Home / News / Researchers Print 4D-sensing Thermocouples
qidi

Researchers Print 4D-sensing Thermocouples

May 8, 2023

Researchers from the University of Hong Kong have developed a 3D printed micro-thermoelectric device that allows for four-dimensional (3D Space + Time) thermometry at the microscale, providing a higher spatial resolution of approximately one micrometer.

Thermocouples have proven advantageous for their simple configuration and passive operation, providing minimal sample disturbance. However, there have been challenges in miniaturizing these devices to achieve high spatial resolution thermometry.

Researchers Print 4D-sensing Thermocouples
Thermocouple network. (Image credit: University of Hong Kong)

The introduction of 3D printing in the fabrication of micro-thermoelectric devices has overcome the limitations faced by traditional thermocouples. Fabrication using bi-metal 3D printing in particular can offer a spatial resolution of approximately one micrometer, enabling the exploration of dynamics, such as Joule heating and evaporative cooling, on microscale subjects like microelectrodes and water menisci.

The Printing Process

The device consists of freestanding platinum (Pt) and silver (Ag) microwires forming an electrical junction acting as a temperature probe suspended in air. The temperature at each junction is measured by the thermoelectric voltage generated by the Seebeck effect. The technique enables microscale temperature mapping in three dimensions, offering the possibility of creating a wide range of on-chip, freestanding microsensors or microelectronic devices without the design restrictions of traditional manufacturing processes.

Bi-metallic printed wires
Bi-metallic printed wires of each thermocouple. (Image credit: University of Hong Kong)

The Pt-Ag microwires were with printable inks containing Ag or Pt nanoparticles, and were dispensed through .micropipettes with diameters of ~5 μm.

As the pipette came into contact with the substrate, a femtoliter ink meniscus was produced, and the nanoparticles rapidly accumulated in the meniscus under solvent evaporation, forming a solidified microstructure on a patterned microelectrode.

The meniscus was then guided with a programmed path and speed to produce a freestanding wire, and termination of wire growth was achieved by increasing the pipette moving speed.

The same procedure was then used to fabricate an Ag microwire on a neighboring microelectrode, and guide its growth towards the top of the Pt wire to create the Pt-Ag thermocouple junction. The Tjunctioned were well-formed, and their cross-sectional area was shown to be as small as 0.38 μm2.

4D Thermocouple Uses

As the 4D micro-thermometry technique allows the researchers to measure the temperature of the environment at designated points without any excitation, they were able to study how heat is dissipated to the air at different ambient conditions such as humidity, which is important for understanding various phenomena associated with evaporation and condensation of water in diverse fields.

thermocouple network
Photo of actual printed thermocouple network. (Image credit: University of Hong Kong)

The team observed that the heat dissipation from the Joule-heated microwire to the air becomes faster as relative humidity decreases, leading to lower temperature and slower decay.

This advancement has the potential to revolutionize the field of thermodynamics and thermal management in various applications, from scientific research to everyday life. The newfound capability to directly measure 4D thermometry at the microscale could pave the way for the development of on-chip, freestanding microsensors or microelectronic devices, eliminating design restrictions imposed by manufacturing processes.

You can read the research paper, titled “Additive Manufacturing of Thermoelectric Microdevices for Four-Dimensional Thermometry” in the Advanced Materials journal, at this link.

Come and let us know your thoughts on our Facebook, Twitter, and LinkedIn pages, and don’t forget to sign up for our weekly additive manufacturing newsletter to get all the latest stories delivered right to your inbox.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Swiss Steel Group’s Ugitech Introduces Custom Wire for 3D Metal Printing

Swiss Steel Group and its French subsidiary Ugitech have launched UGIWAM wire, a new product designed for wire arc additive manufacturing (WAAM). The... read more »

3D Printing Metal
Swiss Steel Group's Ugitech Introduces Custom Wire for 3D Metal Printing

QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

QIDI Tech has introduced the QIDI Q2, a compact, beginner-friendly desktop 3D printer engineered to bring professional-grade capabilities into the home. Designed as... read more »

3D Printers
QIDI Launches Q2 3D Printer for Home Users with Industrial-Grade Features

Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

Purdue University's Composites Manufacturing and Simulation Center has partnered with Thermwood to combine predictive simulation technology with large-scale 3D printing for composite parts... read more »

News
Purdue University Partners with Thermwood to Integrate Simulation with Large-Scale 3D Printing

University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Daniel Rau, an assistant professor of mechanical engineering at the University of Wyoming, has received a $198,932 grant from the National Science Foundation... read more »

Materials
University of Wyoming Researcher Receives NSF Grant to Study 3D Printing of Soft Materials

Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Researchers led by Mejia et al. have developed a real-time monitoring and control system for direct ink write (DIW) 3D printing of thermosetting... read more »

Materials
Researchers Develop Real-Time Control System for 3D Printing of Thermosetting Polymers

Central Saint Martins Graduate Creates 3D Printed Tennis Balls

Central Saint Martins graduate Noé Chouraqui has developed Point, a 3D-printed tennis ball made from bio-based, recyclable filament. The balls maintain the traditional... read more »

News
Central Saint Martins Graduate Creates 3D Printed Tennis Balls

ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

Researchers at ETH Zurich and the University Hospital of Zurich have developed a new type of cardiac patch designed to both seal and... read more »

Medical
ETH Zurich Develops 3D Printed Heart Patch That Integrates with Cardiac Tissue

RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

The Royal Air Force has installed its first internally manufactured 3D printed component on an operational Typhoon fighter jet at RAF Coningsby this... read more »

Aerospace
RAF Installs First In-House 3D Printed Component on Operational Typhoon Fighter Jet

Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

Researchers from the University of California, Irvine and Japan's Okayama and Toho universities have published findings about how chitons develop their exceptionally hard... read more »

Materials
Researchers Study Mollusk Teeth Formation to Advance 3D Printing Materials

3D Printed Modular Bridge Displayed at Venice Exhibition Features Demountable Design

A 3D-printed concrete bridge called Diamanti has been unveiled at the Time, Space, Existence exhibition in Venice as part of a research collaboration... read more »

Construction
3D Printed Modular Bridge Displayed at Venice Exhibition Features Demountable Design

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing