3D Printing
3D Printing Service Contact us
Home / News / Researchers Print Biomimicking Gas Sensors

Researchers Print Biomimicking Gas Sensors

October 5, 2021

A team of researchers from Trinity College and AMBER (SFI Research Centre for Advanced Materials and BioEngineering Research), both in Dublin, Ireland have successfully printed microscopic gas sensors which mimic color change mechanisms seen on peacocks.

The findings have been published in a paper titled “Direct laser writing of vapor-responsive photonic arrays” in the latest Journal of Materials Chemistry.

As you can guess by the title, the sensors respond optically to traces of gas in an environment, meaning that they can be deployed in scenarios where human health and safety may be of concern.

various colors
Various heights produce various colors (Image credit: Trinity College/AMBER)

The sensors, which were printed with a direct laser-writing method of printing, consist of thin plastic plates which swell as they are exposed to various vapours.

As the plates swell the transmission of light through the part results in a perceived change of color. The small plates can be used in pixelated arrays, as you can see in the image above. The colors and sensitivity can be changed by varying the height of the arrays, and the paper explains that the biggest changes in color were seen from the specimens of a taller height.

According to the paper, the specimens also returned to their default colors after the gas flow had been switched off, so they have the potential to be reused it would seem.

The printed sensors potentially offer a low power, low cost, and high sensitivity alternative to current instruments, which require all manner of sensors and data processing in order to convey the status of the sensor.

“We spend the majority of our lives inside our homes, cars, or work environments. Models suggest that the concentration of pollutants can be anywhere from 5-100 times the concentration found outside,” said Larisa Florea, a professor at Trinity College and AMBER.

“These pollutants can be influenced by ambient air, chemical presence, fragrances, food quality, and human activity and have a profound effect on our health.”

This is why the sensors can potentially find application in human health and wellbeing.

As mentioned previously, the method is similar in how a peacock feather changes color as it bends and moves. Many creatures (or plants) in nature depend on color pigmentation for their coloration. However, animals such as peacocks or certain species of butterfly alter color physically, by changing the surface geometry of their coatings, which causes light to reflect/refract at different wavelengths. The researchers measured the transmission spectra and confirmed this.

SEM images (top) and angle-dependent optical microscopy images (bottom)
They change color because they bend when they swell. (Image credit: Trinity College/AMBER)

“More than 300 years ago, Robert Hooke first investigated the vibrant colors on a peacock’s wing. Only centuries later did scientists discover that the effervescent coloration was caused not by traditional pigments but by the interaction of light with tiny objects on the feather, objects which were just a few millionths of a meter in size”, saidDr. Colm Delaney, Lead author of the journal article.

“We have taken this biological design, seen all the way from a magpie to a chameleon, to make some really exciting materials. We achieve this by using a technique known as Direct laser-writing (DLW), which allows us to focus a laser into an extremely small spot, and to then use it to make tiny structures in three dimensions from the soft polymers which we develop in the lab.”

You can read the full paper (via open access) over at this link right here, if you would like more information about the research.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
  • Home
  • Service
  • Materials
  • Contact us

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
  • Twitter Twitter 3D Printing

3D Printer Categories

  • Desktop 3D Printers
  • Industrial 3D Printers
Join our mailinglist

Our newsletter is free & you can unsubscribe any time.

Latest Posts

3d-systems-high-temperature-materials
An Overview of 3D Systems’ High Temperature...

August 11, 2022

thermoset research
Researchers Demonstrate Frontal Polymerization Co...

August 10, 2022

creality
Ender-3 Neo Series, HALOT-RAY, and Creality Sonic...

August 5, 2022

cern pipe
CERN to Spin-off AM Heat Exchangers

August 2, 2022

anycubic microled
Anycubic to Release Cute and Tiny MicroLED Resin ...

August 1, 2022

zem ev
TU Eindhoven Prints CO2-Eating EV

July 29, 2022

liebherr
New Titanium AM Parts Coming to Airbus A350

July 26, 2022

factory in a shipping container
Marines Get Their Own Factory in a Box

July 22, 2022

  • Figure 4 HI TEMP 300-AMB Figure 4 HI TEMP 300-AMB
    HVAC, Low pressure molding/tooling, Motor mounts
    High temperature resistant, Strong
    View Details
  • Figure 4 High Temp 150°C FR Black Figure 4 High Temp 150°C FR Black
    Electrical and under-hood housings, Flame retardant parts for trains and busses, Printed circuit board covers
    Rigid, Self-extinguishing, Flame retardant, High temperature resistant
    View Details
  • Figure 4 RUBBER-65A BLK Figure 4 RUBBER-65A BLK
    Bumpers, Dampers, Grips, Gaskets, Sealings
    High elongation, Mid tear strength
    View Details
  • Figure 4 RUBBER-BLK 10 Figure 4 RUBBER-BLK 10
    Bumpers, Couplings, Grips, Overmoldings
    High tear strength, Tough, Durable
    View Details
  • Modix BIG Meter Modix BIG Meter
    1010 x 1010 x 1010 mm
    $11,500
    Request a Quote
  • Tractus3D T2000 Tractus3D T2000
    680 (D) x 1000 (H) mm
    $27,000
    Request a Quote
  • Cosine Additive AM1 Cosine Additive AM1
    1100 x 850 x 850 mm
    $125,000 - $150,000
    Request a Quote
  • Modix BIG-120Z Modix BIG-120Z
    600 x 600 x 1200 mm
    $7,900
    Request a Quote
  • BLB Industries The BOX SMALL BLB Industries The BOX SMALL
    1500 x 1000 x 1000 mm
    €167.500 - €200.000
    Request a Quote

Company Information

  • What is 3D Printing?
  • Contact us
  • 3D Printing Service
  • Newsletter
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers

Featured Companies

  • Modix
  • 3D Systems
  • Cosine Additive
  • Tractus3D
  • BLB Industries
  • Fusion3

Featured Reviews

  • Anycubic Photon M3
  • Flashforge Creator 3
  • Flashforge Creator 3 Pro
  • Craftbot FLOW IDEX XL
  • BIQU B1
2022 — Strikwerda en Dehue
  • Home
  • Service
  • Materials
  • Contact us
Featured Companies
  • Modix
  • 3D Systems
  • Cosine Additive
  • Tractus3D
  • BLB Industries
  • Fusion3
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
Company Information
  • What is 3D Printing?
  • Contact us
  • 3D Printing Service
  • Newsletter
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Details
Close