3D Printing
News Videos Newsletter Contact us
Home / News / Researchers Print Conductive Stretchy Fibers with Liquid Metal Core
qidi

Researchers Print Conductive Stretchy Fibers with Liquid Metal Core

March 11, 2023

Researchers in Singapore have published a paper demonstrating the printing of stretchable conductive fibers, for the fabrication of multifunctional electronic textiles.

Read on to learn more about the research..

Conductive Fibers

A new method of integrating highly stretchable conductive fiber into ready-made garments with designed patterns has been developed by researchers at NTU Singapore, and Southern University of Science and Technology, China.

This method is used for the fabrication and integration of functional fiber into textiles without the need for tearing down the clothing and re-weaving, as is the usual way of making this kind of thing.

sweater with a printed fiber coil
The sweater with a printed fiber coil can light up a LED wirelessly. (Image credit: NTU Singapore/Southern University of Science and Technology)

The sheath-core fiber consists of a SEBS (styrene–ethylene–butylene–styrene) shell and a Ga-In-Sn alloy liquid metal core, providing high stretchability and flexibility while maintaining high conductivity at large deformation.

This method enables the implementation of sophisticated patterns that are difficult to incorporate into textiles and ready-made garments by traditional methods.

Liquid Core

The increasing demand for flexible electronics that fit well in clothes or fabrics has led to the development of stretchable conductive fibers with properties such as lightweight, high flexibility, and stretchability. However, the challenge of maintaining conductivity while maintaining flexibility under large deformation remains.

Recently, liquid metals, such as Ga–In–Sn alloys, have attracted attention due to their liquidity and high conductivity at room temperature, making them excellent candidates for wearable devices. Liquid metal fibers offer the feasibility of creating elastic electronic devices with high conductivity and continuity through flow under deformation.

Using these methods, the researchers were able to demonstrate applications for wearable electronics, such as on-clothing strain sensors and touch-sensing networks.

You can see the apparatus used to fabricate these fibers in the image below.

3D printed SEBS
3D printed SEBS/liquid metal fiber (a), infrared image of modified extruder (b), and the ratio of outer/inner diameter is shown for various printing speeds and temperatures (c & d). (Image credit: NTU Singapore/Southern University of Science and Technology)

The development of a soft sheath-core fiber was achieved using a modified commercial 3D printer (Anycubic Chiron). Traditional 3D printers are not suitable for printing low-stiffness elastomers such as styrene-ethylene-butylene-styrene (SEBS) due to the requirement for material rigidity to maintain continuous feeding during printing.

To address this, the Bowden extruder was modified into a customized pellet extruder, allowing for direct extrusion from pellets without material rigidity requirements. Additionally, the single-channel nozzle was modified into an assembled coaxial nozzle, enabling a co-flow printing with two-material input, where the inner channel was connected to a syringe pump, and the outer channel was coupled with the customized pellet extruder.

Very Stretchy

The excellent stretchability of the printed fiber was achieved due to the high stretchability of the SEBS shell and the fluidity of the liquid metal core. The fiber was able to withstand up to 500% elongation without breaking down.

The study also investigated the strain-stress relationship of fibers with different inner and outer diameters, and no defects were observed in the microstructure of the fiber even after 1000 stretch cycles.

SEBS/liquid metal fiber with a curved shape
Sensor printed directly on fabric using coaxial SEBS/liquid metal fiber with a curved shape (a), photographs showing the top and side views of the sensor (b & c). (Image credit: NTU Singapore/Southern University of Science and Technology)

Conclusion

The fiber has many potential applications, including stretchable electrical current buses, resistive sensing parts, and electromagnetic coupling sections. Demonstrations of various applications, such as bend sensing, wireless energy transfer, and distributed sensing networks, showed the fiber’s unique electrical and mechanical properties.

With the advantages of in situ 3D printing, the sheath-core fiber can potentially serve as a building block for integrating functional devices into fabrics for soft robotics, environment sensing, and healthcare monitoring.

You can access the paper, titled “Multifunctional Electronic Textiles by Direct 3D Printing of Stretchable Conductive Fibers”, over at this link.

Come and let us know your thoughts on our Facebook, Twitter, and LinkedIn pages, and don’t forget to sign up for our weekly additive manufacturing newsletter to get all the latest stories delivered right to your inbox.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Latest posts

Designer Creates Modular Sneakers with 3D Printed Soles and Climbing Rope Laces

Daniyar Uderbekov, a designer based in Kazakhstan, has developed UDRB, a pair of modular sneakers designed to address environmental concerns in the footwear... read more »

Fashion

Nestlé Expands 3D Printing Operations for Manufacturing Parts Across UK Sites

Nestlé has implemented standardized 3D printing processes across its UK manufacturing facilities over the past year. The company uses a team of three... read more »

News
Nestlé Expands 3D Printing Operations for Manufacturing Parts Across UK Sites

Cornell Researchers Develop 3D Printing Method for Enhanced Superconductors

Cornell University researchers have developed a one-step 3D printing method that produces superconductors with improved properties. The research, published August 19 in Nature... read more »

News
Cornell Researchers Develop 3D Printing Method for Enhanced Superconductors

Scottish Maritime Project Shows Promise for 3D Printed Ship Components

A Scottish project using large-scale additive manufacturing for shipbuilding components has completed its second phase, demonstrating potential benefits for the maritime industry. The... read more »

News
Scottish Maritime Project Shows Promise for 3D Printed Ship Components

Navy Maintenance Center Uses 3D Printing to Replace Destroyer Pump Component at Fraction of Conventional Cost

The Southeast Regional Maintenance Center (SERMC) has successfully used 3D printing to manufacture a replacement cooling rotor for an Arleigh Burke-class guided missile... read more »

Military
Navy Maintenance Center Uses 3D Printing to Replace Destroyer Pump Component at Fraction of Conventional Cost

Rapid Fusion Launches AI Assistant for Large-Format 3D Printers

British manufacturer Rapid Fusion has introduced "Bob," an AI-powered assistant designed to optimize operations for its large-format 3D printing systems. The company developed... read more »

News
Rapid Fusion Launches AI Assistant for Large-Format 3D Printers

Creality Submits IPO Prospectus for Hong Kong Stock Exchange Listing

Shenzhen-based 3D printer manufacturer Creality has submitted a prospectus to the Hong Kong Stock Exchange for a main board listing. The company began... read more »

News
Creality Submits IPO Prospectus for Hong Kong Stock Exchange Listing

Graphjet Technology Partners with Malaysian University on 3D-Printed Heat Sink Development

Graphjet Technology has entered into a collaboration agreement with the Centre for Materials Engineering and Smart Manufacturing (MERCU) at Universiti Kebangsaan Malaysia (UKM).... read more »

News
Graphjet Technology Partners with Malaysian University on 3D-Printed Heat Sink Development

Humtown drives US Manufacturing Comeback with Additive Sand Casting

Humtown Products, an Ohio-based company, is positioning itself to serve manufacturers looking to bring production back to the United States. The company specializes... read more »

News
Humtown drives US Manufacturing Comeback with Additive Sand Casting

Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Oak Ridge National Laboratory has released a comprehensive dataset for its Peregrine software, which monitors and analyzes parts created through powder bed additive... read more »

News
Oak Ridge National Laboratory Releases Advanced Dataset for 3D Printing Quality Monitoring

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Fashion
  • Medical
  • Military
  • QIDI Tech X-Max 3

    • - Print size: 325 x 325 x 315 mm
    • - fully enclosed
    More details »
    $799.00 QIDI Store
    Buy Now
  • Snapmaker Artisan Premium 3-in-1

    • - Print size: 400 x 400 x 400 mm
    • - comes with enclosure
    More details »
    $2,999.00 Snapmaker
    Buy Now
  • QIDI Plus4

    • - Print size: 305 x 305 x 280 mm
    • - print temperature of 370°C
    More details »
    $799.00 QIDI Store
    Buy Now
  • QIDI Tech Q1 Pro

    • - Print size: 245 x 245 x 245 mm
    • - 600mm/s max speed
    More details »
    $449.00 QIDI Store
    Buy Now

Company Information

  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal

Featured Reviews

  • Anycubic Photon Mono M5s
  • Creality Ender 5 S1
  • The Mole 3D Scanner
  • Flashforge Creator 3 Pro

Featured Industries

  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
2025 — Strikwerda en Dehue
  • Home
  • Join our mailing list
  • Contact us
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
  • 3D Printing Metal
Featured Industries
  • Automotive
  • Aerospace
  • Construction
  • Dental
  • Environmental
  • Electronics
  • Medical
  • Military
  • Fashion
  • Art
Company Information
  • What is 3D Printing?
  • Contact us
  • Join our mailing list
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing