3D Printing
Contact us
Home / News / Researchers Print Helical Extrusion from Rotating Nozzle
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Researchers Print Helical Extrusion from Rotating Nozzle

January 19, 2023

Researchers from Harvard University have published a paper detailing their work in 3D printing helical multi materials from a singular rotating nozzle.

They have named the method RM-3DP, or rotational multi material 3D printing.

The process allows for the simultaneous creation and patterning of multimaterial, helically architected filaments with subvoxel control in 2D and 3D motifs using different materials.

Before we get into the nitty-gritty, let’s take a look at a picture to illustrate the result.

Twisty extrusion
Twisty extrusion. (Image credit: Harvard University)

The RM-3DP process works by continuously rotating a multimaterial nozzle with a controlled ratio of angular-to-translational velocity. The resin tanks are mounted above the nozzle, and also rotate with the extrusion head.

This allows for the creation of helical filaments with programmable helix angle, layer thickness, and interfacial area between different materials within a given cylindrical voxel. The cylindrical voxel is defined as by the nozzle diameter multiplied by a length of extruded filament equal to 2x the radius of the nozzle, or 2πR^3 for short. After the extruded helical tracks are laid down, a UV lamp passes over the tracks to cure them.

You can see the whole extrusion and rotating resin tank apparatus in the video below.

https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-022-05490-7/MediaObjects/41586_2022_5490_MOESM3_ESM.mp4

The nozzles have a unique shell-fan-core design utilizing fan elements that create an azimuthally heterogeneous structure. They allow for the free rotation of ink reservoirs and the nozzle using a 4-channel rotary union, which directs pressurized air from stationary inlets to rotating outlets.

HDEAs

The researchers have explained that there is more to this process than simply printing colorful tracks. These are not simply different colors within the helix, but they are indeed multi materials, and in one demonstration the team successfully printed conductive and insulating materials from the same nozzle.

The result was a helical dielectric elastomer actuator (HDEA) filament with discrete, individually addressable helical conductive channels embedded within a dielectric elastomer matrix.

A HDEA is a type of electroactive polymer that changes shape when an electric field is applied to it. When voltage is applied, the material contracts or expands, causing the actuator to change shape. This motion can be used to power mechanical devices such as robots and artificial muscles. HDEAs are lightweight, low-power, and highly compliant, making them suitable for multiple uses including robotics, biomedical devices, and smart materials.

Experiment setup
Experiment setup. (Image credit: Harvard University)

Previous methods of fabricating HDEAs involve helical cutting of a dielectric elastomer tube and deposition of compliant electrodes on the helix faces.

However, using RM-3DP, HDEAs can be rapidly printed in a single step by co-extruding two viscoelastic inks from the shell-fan-core nozzle to simultaneously form both dielectric and conductive components in a helical geometry. The conductive parts are printed with inks containing carbon.

You can see the extrusion and curing process, along with the finished HDEA functioning in the video below.

https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-022-05490-7/MediaObjects/41586_2022_5490_MOESM8_ESM.mp4

Springy Filaments

In addition to the HDEAs, the researchers demonstrated the fabrication of springy filaments and matrixes. The result was a structural composite composed of stiff and soft sub voxelated elements. The springy filaments were fabricated by co-extruding two viscoelastic inks from the fan-core nozzle to embed stiff acrylic springs (blue fan features) within a soft acrylic matrix (transparent fan-core feature).

The researchers demonstrated that the tensile mechanical behavior of the springy filaments could be tuned by varying ω* (the dimensionless rotation rate). It was shown that as ω* was increased from 0 to 5, the tensile strain at failure showed an approximately 30 to 40 fold increase.

You can read the full paper, and check out the other interesting supplemental videos published on Nature, over at this link.

Share:
WhatsApp Twitter Facebook LinkedIn Buffer Reddit E-mail
About the author | Phillip Keane
Phillip is an aerospace engineer from UK. He is a graduate of Coventry University (UK), International Space University (France) and Nanyang Technological University (Singapore), where he studied Advanced Manufacturing at the Singapore Centre for 3D Printing.
Latest posts

Report Shows Construction 3D Printing Can Mitigate Effects of Climate Change

Cement and concrete are two of the most widely used resources in the world, second only to water, and their demand is expected... read more »

1 day ago Construction
wasp 3mt concrete

International Consortium to Promote Use of 3D Printed Metals in Construction

The Politecnico di Milano is leading a "ConstructAdd", an international consortium of partners in developing metal 3D printing techniques to improve energy efficiency... read more »

1 day ago 3D Printing Metal
Tensile test specimen

3D Printed Superyacht Concept Unveiled

Designer Jozeph Forakis has recently unveiled the world's first 3D printed superyacht, the 88-metre Pegasus concept. The yacht is designed to be sustainable... read more »

2 days ago News
superyacht

Creality Launches Huge CR-M4 – The Next Big Thing in Quality Printing

Creality has just released its new FDM 3D printer, the CR-M4, with rigid stability and a HUGE build volume. The CR-M4 is being... read more »

2 days ago 3D Printers
cr-m4

3D Printed Geodesic Labyrinth Arises in France

A 3D printed labyrinth has been erected in the medieval town of Chateaugiron, in the north-west of France, marking the first time that... read more »

4 days ago Art
Labyrinth by night.

Researchers Use Digital Twin for DED Optimization

A group of researchers from Tokyo University of Science and Suwa University of Science, in Japan, have collaborated with TOCALO Co. Ltd. to... read more »

6 days ago 3D Printing Metal
digital twin

Social

  • Facebook Facebook 3D Printing
  • Linkedin Linkedin 3D Printing
  • Twitter Twitter 3D Printing

3D Printer Categories

  • Desktop 3D Printers
  • Industrial 3D Printers
  • Geeetech Mizar Pro Geeetech Mizar Pro
    220 x 220 x 260 mm
    $219
    Buy Now
  • Geeetech A30T Geeetech A30T
    320 x 320 x 420 mm
    $449
    Buy Now
  • Geeetech Mizar S Geeetech Mizar S
    255 x 255 x 260 mm
    $279
    Buy Now
  • Geeetech THUNDER Geeetech THUNDER
    250 x 250 x 260 mm
    $489
    Buy Now
  • Geeetech Mizar M Geeetech Mizar M
    255 x 255 x 260 mm
    $399
    Buy Now
  • Modix BIG-60 Modix BIG-60
    600 x 600 x 660 mm
    $4,900
    Buy Now
  • Fusion3 F410 Fusion3 F410
    355 x 355 x 315 mm
    $4,599
    Buy Now
  • gCreate gMax 2 PRO (with enclosure) gCreate gMax 2 PRO (with enclosure)
    457 x 457 x 609 mm
    $5,295
    Buy Now
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

  • LaserForm Maraging Steel (A) LaserForm Maraging Steel (A)
    Aerospace parts, Automotive high-wear parts, Cooling channels, Furnace parts, Tooling
    Heat resistant
    View Details
  • Certified CuNi30 (A) Certified CuNi30 (A)
    Cryogenic suspension and support systems, Pipe fittings, Valves
    Corrosion resistant, Low temperature resistance
    View Details
  • Tungsten (A) Tungsten (A)
    Components for imaging equipment, Ion generation equipment, Static weight distribution components
    Corrosion resistant, Heat resistant, Ionizing radiation absorption
    View Details
  • A6061-RAM2 (A) A6061-RAM2 (A)
    Light weight structural parts, RF parts for satellites
    High strength, Lightweight, Ductile
    View Details
  • Modix BIG-120Z Modix BIG-120Z
    600 x 600 x 1200 mm
    from $7,500
    Request a Quote
  • Modix BIG Meter Modix BIG Meter
    1010 x 1010 x 1010 mm
    from $13,500
    Request a Quote
  • Industry MAGNUM Industry MAGNUM
    1500 x 1200 x 1200 mm
    €159.000
    Request a Quote
Join our newsletter

Our newsletter is free & you can unsubscribe any time.

Company Information

  • What is 3D Printing?
  • Contact us
  • 3D Printing Service
  • Newsletter
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing

Blog

  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers

Featured Companies

  • Modix
  • 3D Systems
  • Industry
  • Geeetech

Featured Reviews

  • Anycubic Photon M3
  • Flashforge Creator 3
  • Flashforge Creator 3 Pro
  • Craftbot FLOW IDEX XL
  • BIQU B1
2023 — Strikwerda en Dehue
  • Home
  • Service
  • Materials
  • Contact us
Featured Companies
  • Modix
  • 3D Systems
  • Industry
  • Geeetech
Blog
  • Latest News
  • Use Cases
  • Reviews
  • 3D Printers
Company Information
  • What is 3D Printing?
  • Contact us
  • 3D Printing Service
  • Newsletter
  • Advertise with us
  • Media Kit
  • Nederland 3D Printing
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Details
Close